	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA
	ASSIGNMENT (RELATION AND FUNCTIONS)
	CLASS XII SC
1	Let A = $\{1, 2, 3\}$. Then, the number of relations containing $(1, 2)$ and $(1, 3)$ which are reflexive and symmetric but not transitive
	is
	(a) 1 (b) 2 (c) 3 (d) 4
2	If $A = \{a, b, c\}$ and $B = \{-3, -1, 0, 1, 3\}$, then the number of
	injections that can be defined from A to B is
	(a) 125 (b) 243 (c) 60 (d) 120
3	Assertion(A) the modulus function $f: R \rightarrow R$ given by
	f(x) = x is neither one -one nor onto.
	Reason(R) the signum function $f: R \rightarrow R$ given by
	(1, x > 0)
	$f(x) = \begin{cases} 0, x = 0 & \text{is bijective.} \\ 1, x \in 0 \end{cases}$
1	(-1, x < 0)
4	If I, g. $R \rightarrow R$ be two functions defined as $I(X) = X + X$ and $g(x) = x + X$ of Q .
	$g(x) = x - x, \forall x \in \mathbb{R}$. Then, find tog and got.
_	Hence find fog (-3), fog(5) and got(-2).
5	Show that the relation R defined by (a, b) R (c, d) \Rightarrow a + b = b + c on the set N × N is an equivalence relation
6	the set N × N is an equivalence relation. 3x+4
0	Show that if $f: R - \{\frac{1}{5}\} \rightarrow R - \{\frac{1}{5}\}$ is defining by $f(x) = \frac{1}{5x-7}$ and g:
	$R - \{\frac{3}{5}\} \rightarrow R - \{\frac{7}{5}\}$ is define by $g(x) = \frac{7x+4}{5x-3}$ then fog = IA and gof =
	IB when $A = R - \{\frac{3}{5}\}$ B = $R - \{\frac{7}{5}\}$; IA (x) = x, for all x \in A, IB (x) = x, for
	all $x \in B$ are called identify function on set A and B respectively.
7	Show that the function f: $\mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+x^2}$, $x \in \mathbb{R}$, is
	neither one-one nor onto.
8	Show that the function $f: R \rightarrow \{x \in R: -1 < x < 1\}$ defined by
	$f(x) = \frac{x}{1+ x }$, $x \in \mathbb{R}$ is one-one and onto function.
9	If $f(x) = e^x$ and $g(x) = \log_e x(x > 0)$ fing gof and fog. Are they
	equal?

10	Sherlin and Danju are playing Ludo at during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set players while B be the set of all possible outcomes. A = {S, D}, B = {1,2,3,4,5,6} (i) Raji wants to know the number of functions from A to B. How many numbers of functions are possible?
	numbers of functions are possible? (ii) Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1),
	(4,3), (5,5)}. Then R is
	(iii) Let $R: B \rightarrow B$ be defined by
	R={(1,1),(1,2), (2,2), (3,3), (4,4), (5,5),(6,6)}, then R is
	(iv) Raji wants to know the number of relations possible from A to B.
L	How many numbers of relations are possible?