BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT (RELATION AND FUNCTIONS)
 CLASS XII SC

1 Let $A=\{1,2,3\}$. Then, the number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(a) 1
(b) 2
(c) 3
(d) 4

2 If $A=\{a, b, c\}$ and $B=\{-3,-1,0,1,3\}$, then the number of injections that can be defined from A to B is
(a) 125
(b) 243
(c) 60
(d) 120

3 Assertion(A) the modulus function $f: R \rightarrow R$ given by $f(x)=|x|$ is neither one -one nor onto.
Reason(R) the signum function $f: \mathrm{R} \rightarrow \mathrm{R}$ given by
$f(x)=\left\{\begin{array}{l}1, x>0 \\ 0, x=0 \\ -1, x<0\end{array}\right.$ is bijective.
4 If $f, g: R \rightarrow R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x, \forall x \in R$. Then, find fog and gof. Hence find fog (-3), fog(5) and gof(-2).
5 Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+b=b+c$ on the set $\mathbf{N} \times \mathbf{N}$ is an equivalence relation.
6 Show that if $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\}$ is defining by $f(x)=\frac{3 x+4}{5 x-7}$ and g : $R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\}$ is define by $g(x)=\frac{7 x+4}{5 x-3}$ then fog =IA and gof $=$ IB when $A=R-\left\{\frac{3}{5}\right\} \quad B=R-\left\{\frac{7}{5}\right\} ;$ IA $(x)=x$, for all $x \in A, \operatorname{IB}(x)=x$, for all $x \in B$ are called identify function on set A and B respectively.
7 Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$, is neither one-one nor onto.
8 Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|}, \mathrm{x} \in \mathrm{R}$ is one-one and onto function.
9 If $f(x)=e^{x}$ and $g(x)=\log _{e} x(x>0)$ fing gof and fog. Are they equal?

10 Sherlin and Danju are playing Ludo at during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set
 players while B be the set of all possible outcomes. $A=\{S, D\}, B=$ \{1,2,3,4,5,6\}
(i) Raji wants to know the number of functions from A to B. How many numbers of functions are possible?
(ii) Let R be a relation on B defined by $R=\{(1,2),(2,2),(1,3),(3,4),(3,1)$, $(4,3),(5,5)\}$. Then R is
(iii) Let $R: B \rightarrow B$ be defined by
$R=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then R is
(iv) Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?

