	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT ANSWER KEY(SETS) CLASS XISC
1	C
2	A
3	Assertion and reason is true and reason is correct explanation of assertion
4	Let A and B be two sets having m and n elements respectively no of subsets of $A=2^{m}$ no of subsets of $B=2^{n}$ According to question $\begin{aligned} & 2^{m}=56+2^{n} \\ & 2^{m}-2^{n}=56 \\ & 2^{n}\left(2^{m-n}-1\right)=56 \\ & 2^{n}\left(2^{m-n}-1\right)=2^{3}\left(2^{3}-1\right) \\ & 2^{n}=2^{3} \\ & n=3 \\ & m-n=3 \\ & m-3=3 \\ & m=6 \end{aligned}$
5	$\begin{aligned} & \text { (i) } n(A)=n(A-B)+n(A \cap B) \\ & =14+x+x \\ & =14+2 x \\ & N(B)=n(B-A)+n(A \cap B) \\ & =3 x+x \\ & =4 x \\ & \text { but } n(A)=n(B) \text { (Given) } \\ & 14+2 x=4 x \\ & x=7 \\ & \text { (ii) } n(A \cup B)=n(A-B)+n(B-A)+n(A \cap B) \\ & =14+x+3 x+x \\ & =14+5 x=14+5 \times 7=49 \end{aligned}$
6	

7	We have to prove, $A-(A-B)=A \cap B$ So take L.H.S $\begin{aligned} & A-(A-B)=A-\left(A \cap B^{\prime}\right)\left\{\because A-B=A \cap B^{\prime}\right\} \\ & =A \cap\left(A \cap B^{\prime}\right)^{\prime} \\ & =A \cap\left[A^{\prime} \cup\left(B^{\prime}\right)^{\prime}\right] \quad\left\{\because(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}\right\} \\ & \left.=A \cap\left(A^{\prime} \cup B\right) \quad \because \because\left(B^{\prime}\right)^{\prime}=B\right\} \\ & =\left(A \cap A^{\prime}\right) \cup(A \cap B) \quad\{\because \text { Distributive property of set: }(A \cap B) \cup(A \cap C)= \\ & A \cap(B \cup C)\} \\ & =\emptyset \cup(A \cap B) \quad\left\{\because A \cap A^{\prime}=\varnothing\right\} \\ & =A \cap B=R . H . S \end{aligned}$ Hence Proved
8	Sol. Let $x \in(A-B) \cap(A-C)$ $\begin{array}{ll} \Rightarrow & x \in(A-B) \text { and } x \in(A-C) \\ \Rightarrow & (x \in A \text { and } x \notin B) \text { and }(x \in A \text { and } x \notin C) \\ \Rightarrow & x \in A \text { and }(x \notin B \text { and } x \notin C) \\ \Rightarrow & x \in A \text { and } x \notin(B \cup C) \\ \Rightarrow & x \in A-(B \cup C) \\ \Rightarrow & (A-B) \cap(A-C) \subset A-(B \cup C) \tag{i} \end{array}$ Now, let $\begin{array}{ll} & y \in A-(B \cup C) \\ \Rightarrow & y \in A-(B \cup C) \\ \Rightarrow & y \in A \text { and } y \notin(B \cup C) \\ \Rightarrow & y \in A \text { and }(y \notin B \text { and } y \notin C) \\ \Rightarrow & (y \in A \text { and } y \notin B) \text { and }(y \in A \text { and } y \notin C) \\ \Rightarrow & y \in(A-B) \text { and } y \in(A-C) \\ \Rightarrow & y \in(A-B) \cap(A-C) \\ \Rightarrow & A-(B \cup C) \subset(A-B) \cap(A-C) \tag{ii} \end{array}$ From (i) and (ii), $A-(B \cup C)=(A-B) \cap(A-C)$
9	$\begin{aligned} & \mathrm{n}(\mathrm{M})=\mathrm{a}+\mathrm{b}+\mathrm{d}+\mathrm{e}=15 \\ & n(P)=\mathrm{b}+\mathrm{c}+\mathrm{e}+\mathrm{f}=12 \\ & \mathrm{n}(\mathrm{C})=\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}=11 \\ & \mathrm{n}(\mathrm{M} \cap \mathrm{P})=\mathrm{b}+\mathrm{e}=9 \\ & \mathrm{n}(\mathrm{M} \cap \mathrm{C})=\mathrm{d}+\mathrm{e}=5 \\ & \mathrm{n}(\mathrm{P} \cap \mathrm{C})=\mathrm{e}+\mathrm{f}=4 \\ & \mathrm{e}=3 \end{aligned}$

so $b=6, d=2, f=1$
$\mathrm{a}=4, \mathrm{~g}=5, \mathrm{c}=2$
(i) $\mathrm{g}=5$,
(ii) $\mathrm{a}=4$,
(iii) $\mathrm{c}=2$
(iv) $\mathrm{f}=1$,
(v) $\mathrm{b}=6$,
(vi) $g+a+c=11$
(vii) $a+b+c+d+e+f+g+=23$
(viii) $25-(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g})=25-23=2$

