	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA		
	ASSIGNMENT ANSWER KEY(SETS)		
	CLASS XISC		
1	С		
2	Α		
3	Assertion and reason is true and reason is correct explanation of		
	assertion		
4	Let A and B be two sets having m and n elements respectively		
	no of subsets of A = 2^{11}		
	no of subsets of $B = 2^{\prime\prime}$		
	$2m = 56 \pm 2n$		
	$2^{-} - 50 + 2$ $2^{-} - 56$		
	$2^{n}(2^{m-n}-1) = 56$		
	$2^{n}(2^{m-n}-1) = 2^{3}(2^{3}-1)$		
	$2^{n} = 2^{3}$		
	n = 3		
	m – n = 3		
	m – 3 = 3		
	m = 6		
5	(i) $n(A) = n(A - B) + n(A \cap B)$		
	= 14 + x + x		
	= 4 + 2X		
	N(B) - H(B - A) + H(A + B) = 3x + x		
	= 4x		
	but $n(A) = n(B)$ (Given)		
	14 + 2x = 4x		
	x = 7		
	(ii) n (A \cup B) = n (A – B) + n (B – A) + n (A \cap B)		
	= 14 + x + 3x + x		
	= 14 + 5x = 14 + 5 × 7 = 49		
6			
	$A \begin{pmatrix} 2 & 4 \begin{pmatrix} 6 \\ 12 \end{pmatrix} & 9 \end{pmatrix}^{D}$		
	8		
	20×15		
	5 10		
	c		
1			

7	We have to prove, $A - (A - B) = A \cap B$				
	So take L.H.S				
	$A - (A - B) = A - (A \cap B') \{ \because A - B = A \cap B' \}$				
	$= \mathbf{A} \cap (\mathbf{A} \cap \mathbf{B}')'$				
	$= \mathbf{A} \cap [\mathbf{A}]$	$A \cup (B) = \{ (A \cup B) = A \cup B \}$ $A' \cup B = \{ (B')' = B \}$			
	$= (A \cap A)$	$A' \cup (A \cap B)$ {: Distributive property of set: (A)	∩ B) ∪ (A ∩ C) =		
	$A \cap (B \cup C)$				
	$= \phi \cup (\mathbf{A} \cap \mathbf{B}) \{: \mathbf{A} \cap \mathbf{A}' = \phi\}$				
	$= \mathbf{A} \cap \mathbf{B} = \mathbf{R}.\mathbf{H}.\mathbf{S}$				
	Hence F	Proved			
8	Sol. Let:	$x \in (A-B) \cap (A-C)$			
	⇒	$x \in (A - B)$ and $x \in (A - C)$			
	⇒	$(x \in A \text{ and } x \notin B) \text{ and } (x \in A \text{ and } x \notin C)$			
	⇒	$x \in A$ and $(x \notin B$ and $x \notin C$)			
	⇒	$x \in A \text{ and } x \notin (B \cup C)$			
	⇒	$x \in A - (B \cup C)$			
	⇒	$(A-B) \cap (A-C) \subset A - (B \cup C)$	(i)		
	Now, let	•			
		$y \in A - (B \cup C)$			
	⇒	$y \in A - (B \cup C)$			
	⇒	$y \in A \text{ and } y \notin (B \cup C)$			
	⇒	$y \in A$ and $(y \notin B$ and $y \notin C)$			
	⇒	$(y \in A \text{ and } y \notin B) \text{ and } (y \in A \text{ and } y \notin C)$			
	⇒	$y \in (A - B)$ and $y \in (A - C)$			
	⇒	$y \in (A-B) \cap (A-C)$			
	⇒	$A-(B\cup C)\subset (A-B)\cap (A-C)$	(ii)		
	From (i) and (ii),				
		$A-(B\cup C)=(A-B)\cap (A-C)$			
9	n(M)=a+	b+d+e=15			
	n(P) = b	+ c + e + f = 12			
	n(C) = d + e + f + g = 11				
	$n (M \cap P) = b + e = 9$				
	$n \ (M \ \cap C) = d + e = 5$				
	$n(P\capC)$) = e + f = 4			
	e = 3				

so b = 6, d = 2, f = 1
a = 4, g = 5, c = 2
(i) g = 5,
(ii) a = 4,
(iii) c = 2
(iv) f = 1,
(v) b = 6,
(vi) g + a + c = 11
(vii) a + b + c + d + e + f + g + = 23
(viii) 25 - $(a + b + c + d + e + f + g) = 25 - 23 = 2$