	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT ANSWER KEY (RELATION AND FUNCTIONS) CLASS XII SC
1	A
2	C
3	Assertion is true, reason is false
4	Given, $\mathrm{f}(\mathrm{x})=\|\mathrm{x}\|+\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\|\mathrm{x}\|-\mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$. $\begin{aligned} & \Rightarrow \quad f(x)= \begin{cases}x+x, & x \geq 0 \\ -x+x, & x<0\end{cases} \\ & \text { and } \quad g(x)= \begin{cases}x-x, & x \geq 0 \\ -x-x, & x<0\end{cases} \\ & \Rightarrow f(x)=\left\{\begin{array}{ll} 2 x, & x \geq 0 \\ 0, & x<0 \end{array} \text { and } g(x)=\left\{\begin{array}{cc} 0, & x \geq 0 \\ -2 x, & x<0 \end{array}\right.\right. \end{aligned}$ Thus, for $x \geq 0, \operatorname{gof}(x)=g(f(x))=g(2 x)=0$ and for $x<0, \operatorname{gof}(x)=g(f(x))=g(0)=0 \Rightarrow \operatorname{gof}(x)=0, \forall x \in R$ Similarly, for $x>$ $0, f \circ g(x)=f(g(x))=f(0)=0$ and for $x<0$, fog $(x)=f(g(x))=f(-2 x)$ $=2(-2 x)=-4 x$ $\Rightarrow f \circ g(x)=\left\{\begin{array}{ll} 0, & x \geq 0 \\ -4 x, & x<0 \end{array} \text { We have, gof }(\mathbf{x})=0, \forall \mathbf{x} \in \mathbf{R} .\right.$ and $f \circ g(x)= \begin{cases}0, & x>0 \\ -4 x, & x<0\end{cases}$ Clearly, $\mathrm{fg}(-3)=-4(-3)=12$, $\mathrm{fog}(5)=0$ and gof(-2) $=0$
5	R is Reflexive if $(a, b) R(a, b)$ for (a, b) in $N \times N$ Let $(a, b) R(a, b) \Rightarrow a+b=b+a$ which is true since addition is commutative on N. \Rightarrow R is reflexive. R is Symmetric if $(a, b) R(c, d) \Rightarrow(c, d) R(a, b)$ for $(a, b),(c, d)$ in $N \times$ N Let $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ $\Rightarrow a+d=b+c$ $\Rightarrow b+c=a+d$ $\Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a}$ [since addition is commutative on N] $\Rightarrow(c, d) R(a, b)$ $\Rightarrow R$ is symmetric. R is Transitive if $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow(a, b) R(e, f)$

	$\begin{aligned} & \text { for }(a, b),(c, d),(e, f) \text { in } N \times N \\ & \text { Let }(a, b) R(c, d) \text { and }(c, d) R(e, f) \\ & \Rightarrow a+d=b+c \text { and } c+f=d+e \\ & \Rightarrow(a+d)-(d+e)=(b+c)-(c+f) \\ & \Rightarrow a-e=b-f \\ & \Rightarrow a+f=b+e \Rightarrow(a, b) R(e, f) \\ & \Rightarrow R \text { is transitive. } \end{aligned}$
6	$\begin{aligned} & g\left(\frac{3 x+4}{5 x+7}\right)=\frac{7\left(\frac{3 x+4}{5 x+7}\right)+4}{5\left(\frac{3 x+4}{5 x+7}\right)-3}=x \\ & \operatorname{gof}(\mathrm{x})= \\ & f \circ g(x)=f\left(\frac{3 x+4}{5 x-3}\right)=\frac{3\left(\frac{7 x+4}{5 x-3}\right)+4}{5\left(\frac{7 x+4}{5 x-3}\right)-7}=x \end{aligned}$ Thus $\operatorname{gof}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{B}$ fog $(x)=x$, for all $x \in A$ Which implies that gof = IB And Fog $=\mathrm{IA}$
7	and $\begin{gathered} \text { and } f\left(x_{1}\right)=f\left(x_{2}\right) \\ \frac{x_{1}}{1+x_{1}^{2}}=\frac{x_{2}}{1+x_{2}^{2}} \\ x_{1}\left(1+x_{2}^{2}\right)=x_{2}\left(1+x_{1}^{2}\right) \\ x_{1}+x_{1} \cdot x_{2}^{2}-x_{2}-x_{2} x_{1}^{2}=0 \\ \left(x_{1}-x_{2}\right) \cdot\left(x_{1} \cdot x_{2}-1\right)=0 \end{gathered}$ $\text { Taking } x_{1}=4, x_{2}=\frac{1}{4} \in R$ $\therefore f$ is not one-one. $\begin{aligned} & \text { (ii) } f \text { is onto }=\text { Let } y \in R \text { (co-domain) } \\ & \quad f(x)=y \\ & \Rightarrow \quad \frac{x}{1+x^{2}}=y \Rightarrow y \cdot\left(1+x^{2}\right)=x \\ & \Rightarrow \quad y x^{2}+y-x=0 \\ & \Rightarrow \quad x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2 y} \\ & \text { since, } x \in R, \therefore \quad(1+2 y)\left(1-4 y^{2} \geq 0\right. \\ & \Rightarrow \quad-\quad-\frac{1}{2} \leq y<\frac{1}{2} \\ & \therefore \quad \end{aligned}$ So Range $(f) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ Range $(f) \neq R$ (Co-domain) $\therefore f$ is not onto.

8	One-One : Let $x_{1}, x_{2} \in R$ Such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ or $\frac{x}{1+\left\|x_{1}\right\|}=\frac{x_{2}}{1+\left\|x_{2}\right\|}$ Case (i): If $x_{1}, x_{2}<0$ then $\frac{x_{1}}{1-x_{1}}=\frac{x_{2}}{1-x_{2}}$ or $\quad x_{1}-x_{1} x_{2}=x_{2}-x_{1} x_{2}$ or (ii) $\quad x_{1}=x_{2}$ Case (ii): If $x_{1}, x_{2}>0$ then $\begin{aligned} \frac{x_{1}}{1+x_{1}} & =\frac{x_{2}}{1+x_{2}} \\ x_{1}+x_{1} x_{2} & =x_{2}+x_{1} x_{2} \\ \text { or } & x_{1} \end{aligned}=x_{2}$ Case (iii) : If $x_{1}>0, x_{2}<0$ (Similarly for $x_{1}<0, x_{2}$ >0) or $\quad \frac{x_{1}}{1+\left\|x_{1}\right\|} \neq \frac{x_{2}}{1-\left\|x_{2}\right\|}$ $\begin{aligned} & \\ \text { or } \quad f\left(x_{1}\right) & \neq x_{2} \\ \therefore & f\left(x_{2}\right)\end{aligned}$ \therefore From (i), (ii) \& (iii) f is a one-one function.	Onto: Let any $\begin{aligned} & y \in\{x \in R:-1<x<1\} \\ & (\because-1<y<1) \end{aligned}$ Such that $y=f(x)$ or $y=\frac{x}{1+\|x\|} 1$ or $y=\frac{x}{1 \pm x} \text { or } x=\frac{y}{1 \pm y}$ As $y \neq-1, y \neq 1$ $\therefore \quad x=\frac{y}{1 \pm y} \in R 1$ $\therefore f$ is an onto function. $f^{-1}(x)=\left\{\begin{array}{l} \frac{x}{1+x}, \text { if } x<0 \\ \frac{x}{1-x}, \text { if } x \geq 0 \end{array}\right.$
9	fing gof and fog	
10	(i) 6^{2} (ii) (d) None of these three (iii) Reflexive and Transitive (iv) 2^{12}	

