	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA			
	ASSIGNMENT ANSWER KEY			
	(RELATION AND FUNCTIONS)			
	CLASS XII SC			
1	Α			
2	С			
3	Assertion is true, reason is false			
4	Given, $f(x) = x + x$ and $g(x) = x - x$, $\forall x \in \mathbb{R}$.			
	$\Rightarrow \qquad f(x) = \begin{cases} x + x, \ x \ge 0 \\ -x + x, \ x < 0 \end{cases}$			
	$x = 1$ $(x) = \begin{cases} x - x, x \ge 0 \end{cases}$			
	and $g(x) = \begin{cases} -x - x, \ x < 0 \end{cases}$			
	$[2x, x \ge 0, \dots, [0, x \ge 0]]$			
	$\Rightarrow f(x) = \begin{cases} and g(x) = \\ 0, x < 0 \end{cases}$ and $g(x) = \begin{cases} -2x, x < 0 \end{cases}$			
	Thus, for $x \ge 0$,gof (x) = g(f(x)) = g(2x) = 0			
	and for x < 0, $gof(x) = g(f(x)) = g(0) = 0 \Rightarrow gof(x) = 0, \forall x \in R$ Similarly, for x >			
	0, fog (x) = $f(g(x)) = f(0) = 0$			
	and for $x < 0$, fog $(x) = f(g(x)) = f(-2x)$			
	= 2(-2x) = -4x			
	$\Rightarrow fog(x) = \begin{cases} 0, & x \ge 0 \\ -4x, & x < 0 \end{cases}$ We have, $gof(x) = 0, \forall x \in \mathbb{R}$.			
	$\left[-4x, x<0\right]$			
	Clearly, $fg(-3) = -4(-3) = 12$,			
	fog(5) = 0 and gof(-2) = 0			
5	R is Reflexive if (a, b) R (a, b) for (a, b) in N × N			
	Let (a, b) R (a, b) \Rightarrow a + b = b + a which is true since addition is			
	commutative on N. \Rightarrow			
	R is reflexive.			
	R is Symmetric if (a, b) R (c, d) \Rightarrow (c, d) R (a, b) for (a, b), (c, d) in N ×			
	Let (a, b) R (c, d)			
	\Rightarrow a + d = D + c			
	$\Rightarrow D + C = d + Q$			
	\Rightarrow c + v = u + a [since addition is commutative on N] \Rightarrow (c, d) p (c, b)			
	\rightarrow (c, u) \land (d, u) \rightarrow D is symmetric			
	$\Rightarrow \kappa \text{ is symmetric.}$			
	κ is transitive if (a, b) κ (c, d) and (c, d) κ (e, f) \Rightarrow (a, b) κ (e, f)			

$$\begin{array}{|c|c|c|c|} \hline \text{for } (a, b), (c, d), (e, f) \text{ in } N \times N \\ \text{Let } (a, b) R (c, d) \text{ and } (c, d) R (e, f) \\ \Rightarrow a + d = b + c \text{ and } c + f = d + e \\ \Rightarrow (a + d) - (d + e) = (b + c) - (c + f) \\ \Rightarrow a - e = b - f \\ \Rightarrow a + f = b + e \Rightarrow (a, b) R (e, f) \\ \Rightarrow R \text{ is transitive.} \end{array}$$

$$\begin{array}{|c|c|c|} \hline g \left(\frac{3x+4}{5x+7} \right) = \frac{7 \left(\frac{3x+4}{5x+7} \right) + 4}{5 \left(\frac{3x+4}{5x+7} \right) - 3} = x \\ gof (x) = \\ \hline ggof (x) = \\ \hline f \log(x) = f \left(\frac{3x+4}{5x-3} \right) = \frac{3 \left(\frac{7x+4}{5x+7} \right) + 4}{5 \left(\frac{3x+4}{5x+7} \right) - 3} = x \\ \hline f \log(x) = f \left(\frac{3x+4}{5x-3} \right) = \frac{3 \left(\frac{7x+4}{5x+7} \right) + 4}{5 \left(\frac{7x+4}{5x-3} \right) - 7} = x \\ \hline Thus gof(x) = x, \text{ for all } x \in B \\ \hline f \log (x) = x, \text{ for all } x \in A \\ \hline Which implies that gof = IB \\ \hline And Fog = IA \\ \hline \frac{x_1}{1+x_1^2} = \frac{x_2}{1+x_2^2} \qquad \Rightarrow \quad \frac{x}{1+x^2} = y \Rightarrow y.(1 + x^2) = x \\ \hline x_1(1 + x_2^2) = x_2(1 + x_1^2) \\ x_1 + x_1x_2^2 - x_2 - x_2x_1^2 = 0 \\ \hline (x_1 - x_2).(x_1, x_2 - 1) = 0 \\ \hline \frac{x_1}{1+x_2} = \frac{1}{4} \in R. \\ \hline So \text{ Range } (f) \neq R (\text{Co-domain}) \\ \therefore f \text{ is not onto.} \end{array}$$

8	One-One Such that or $\frac{x}{1+ }$ Case (i) : 1 $\frac{1}{1- }$: Let $x_1, x_2 \in R$ $f(x_1) = f(x_2)$ $\frac{x_1}{ x_1 } = \frac{x_2}{1+ x_2 }$ If $x_1, x_2 < 0$ then $\frac{x_1}{ x_1 } = \frac{x_2}{1-x_2}$	Onto: Let any $y \in \{x \in R: -1 < x < 1\}$ $(\because -1 < y < 1)$ Such that $y = f(x)$ or $y = \frac{x}{1+ x } 1$	
	or x ₁ - or Case (ii) :	$x_1x_2 = x_2 - x_1x_2$ $x_1 = x_2$ If $x_1, x_2 > 0$ then	or $y = \frac{x}{1 \pm x}$ or $x = \frac{y}{1 \pm y}$	
		$\frac{x_1}{x_1} = \frac{x_2}{1+x_2}$	As $y \neq -1$, $y \neq 1$ $y = -\frac{y}{c} R 1$	
	or Case (iii) > 0	$x_1x_2 - x_2 + x_1x_2$ $x_1 = x_2$: If $x_1 > 0, x_2 < 0$ (Similarly for $x_1 < 0, x_2$	$\therefore \qquad x = \frac{1 \pm y}{1 \pm y} \in \mathbb{R}^{T}$ $\therefore f \text{ is an onto function.}$	
	or $\frac{x}{1+ }$	$\frac{1}{ x_1 } \neq \frac{ x_2 }{ 1- x_2 }$ $x_1 \neq x_2$	$f^{-1}(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x < 0 \end{cases}$	
	or $f(x_1) \neq f(x_2)$ \therefore From (i), (ii) & (iii) f is a one-one function.		$\left \frac{x}{1-x}\right , \text{ if } x \ge 0$	
9	fing gof and fog			
10	(i)	(i) 6^2		
	(ii) (d) None of these three			
	(iii) Reflexive and Transitive			
	(iv)	2 ¹²		