| BCM SCHOOL, BASANT AVENUE, DUGRI ROAD, LUDHIANA CLASS -X (MATHEMATICS) <br> Assignment 1(Real Numbers \& Polynomials) <br> ANSWER KEY |  |
| :---: | :---: |
| 1. | (a)13 |
| 2. | (d) $a-0, b=-6$ |
| 3. | (d) -10 |
| 4. | (b)Both assertion and reason are true and reason is not the correct explanation of assertion. |
| 5. | Let us assume that $5+3 \sqrt{2}$ is a rational number with $p$ and $q$ as co-prime integers and $q$ $\neq 0$ $\begin{aligned} & \Rightarrow 5+3 \sqrt{2}=p / q \\ & \Rightarrow 3 \sqrt{2}=(p / q)-5 \\ & \Rightarrow \sqrt{2}=(p-5 q) / 3 q \end{aligned}$ <br> $\Rightarrow(p-5 q) / 3 q$ is a rational number <br> However, we know that $\sqrt{2}$ is an irrational number <br> This leads to the contradiction that $5+3 \sqrt{2}$ is an irrational number |
| 6. | $\begin{aligned} & (-a)^{2}+p \cdot(-a)+q=0-->a^{2}-a p+q=0 \\ & (-a)^{2}+m \cdot(-a)+n=0-->a^{2}-a m+n=0 \end{aligned}$ <br> Since they both equal 0 , you can set them equal to each other: $\begin{aligned} & a^{2}-a p+q=a^{2}-a m+n \\ & -a p+q+-a m+n \\ & a m-a p=n-q \\ & a(m-p)=n-q \end{aligned}$ $\mathrm{a}=\mathrm{n}-\mathrm{q} / \mathrm{m}-\mathrm{p}$ |


| 7. | $\alpha$ and $\beta$ are the zeroes of the polynomial $2 x^{2}-3 x+1$ $\begin{gathered} \alpha+\beta=\frac{-b}{a}=\frac{-(-3)}{2}=\frac{3}{2} \\ \alpha \beta=\frac{c}{a}=\frac{1}{2} \end{gathered}$ <br> Now, zeroes of the required polynomial are $3 \alpha$ and $3 \beta$ $\begin{array}{ll} \Rightarrow & S=3 \alpha+3 \beta=3(\alpha+\beta)=3\left(\frac{3}{2}\right)=\frac{9}{2} \\ \Rightarrow & \mathrm{P}=(3 \alpha)(3 \beta)=9(\alpha \beta)=9 \times \frac{1}{2}=\frac{9}{2} \\ \text { Now, required polynomial is } x^{2}-\mathrm{S} x+p \end{array}$ <br> Now, required polynomial is $x^{2}-\mathrm{S} x+p$ $=x^{2}-\frac{9}{2} x+\frac{9}{2}=\frac{k}{2}\left(2 x^{2}-9 x+9\right)$, where $k$ be any constant. |
| :---: | :---: |
| 8. | (a)LCM <br> (b) 180 <br> (c) 2 <br> (d) $4 \& 60$ |

