BCM SCHOOL, BASANT AVENUE, DUGRI ROAD, LUDHIANA CLASS -X (MATHEMATICS) Assignment 1(Real Numbers & Polynomials) ANSWER KEY	
1.	(a)13
2.	(d) $a - 0, b = -6$
3.	(d) -10
4.	(b)Both assertion and reason are true and reason is not the correct explanation of assertion.
5.	Let us assume that $5 + 3\sqrt{2}$ is a rational number with p and q as co-prime integers and q $\neq 0$ $\Rightarrow 5 + 3\sqrt{2} = p/q$ $\Rightarrow 3\sqrt{2} = (p/q) - 5$ $\Rightarrow \sqrt{2} = (p - 5q) / 3q$ $\Rightarrow (p - 5q) / 3q$ is a rational number However, we know that $\sqrt{2}$ is an irrational number
(This leads to the contradiction that $5 + 3\sqrt{2}$ is an irrational number
б.	$(-a)^{-} + p \cdot (-a) + q = 0> a^{-} -ap + q = 0$ $(-a)^{2} + m \cdot (-a) + n = 0> a^{2} -am + n = 0$ Since they both equal 0, you can set them equal to each other: $a^{2} -ap + q = a^{2} -am + n$ -ap + q + -am + n am - ap = n - q a(m-p) = n - q
	a=n-q/m-p

7.	α and β are the zeroes of the polynomial $2x^2 - 3x + 1$ $\Rightarrow \qquad \alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{2} = \frac{3}{2}$
	$\alpha\beta = \frac{1}{a} = \frac{1}{2}$ Now, zeroes of the required polynomial are 3 α and 3 β
	$\Rightarrow \qquad S = 3\alpha + 3\beta = 3(\alpha + \beta) = 3\left(\frac{3}{2}\right) = \frac{9}{2}$
	$\Rightarrow \qquad P = (3\alpha)(3\beta) = 9(\alpha\beta) = 9 \times \frac{1}{2} = \frac{9}{2}$
	Now, required polynomial is $x^2 - 5x + p$ = $x^2 - \frac{9}{2}x + \frac{9}{2} = \frac{k}{2}(2x^2 - 9x + 9)$, where k be any constant.
8.	(a)LCM
	(b) 180 (c) 2
	(d) 4 & 60