BCM SCHOOL LUDHIANA

CLASS XIi
APPLICATION OF INTEGRALS
ANSWER KEY OF AOI
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As area between y2 = x, x = 4 is divided into 2 parts by x = a,

so,(area undery2 =x, x =0tox = a) = (area undery2 =x, x = a, x = 4)

= area (A) = area (B)
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The line, x = a, divides the area bounded by the parabola and x = 4 into two
equal parts.

= Area OAD = Area ABCD

It can be observed that the given area is symmetrical about x-axis.

= Area OED = Area EFCD
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Areaof EFCD= | +/xdx
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From (1) and (2), we obtain
2 .2 2 3
2@ = Z8- ()7
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—2-(a)2=8
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=(@a)z=4
> a=(4)
Therefore, the value of ais (4) %




Wehave,y =1+ |z 4 1,z=-3,z=3,y=0

{—:r:, if z<—1
YT e12 if z>-1

.. Area of shaded region,
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Using integration, find the area of the region bounded by the line
2y=5x+7, x—axis and the lines x=2 and x=8.

We have 2y =5x+7
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.. Area of shaded region=
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= [5-32+7-8-10-14] = _[160+56 - 24] 769

= % =96 sq units |
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Sketch the region {(x.0): y=+/4—x"} and x-axis. Find the area of the region using
integration.

Given region is {(x,0):y=+/4—x"} and X-axis.

Wehave, y=v4-x" =y =4- =’ +y =4
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.. Area of shaded region, A = ji N ji\,‘f — Py
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Find the area enclosed by the curve x =3cost, v=2 sint .
A

0,2)|B

a0 I,
X A
k_/ 3, 0)

0,-2)
v
Fig. 8.5
Eliminating r as follows:
! : x y_ o Xy .
x=3cost, y=2 sint = —=cost,— =sin t, we obtain ry +T = L. which is the

equation of an ellipse.
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From Fig. 8.5, we get the required area = 41-5 9—x"dx
1]

:E[E\fg—xz +%sin ‘g] = 6.7 sq units.
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Find the area of the region bounded by the curves x = ar* and y=2at between
the ordinate coresponding to t =1 and t =2.

Fig. 8.7

Giventhat x=at’ ...(i), y=2at ...(ii) =>I=2‘—F putting the value of  in (i), we get
o
y* =4ax

Putting t =1 and t=2 in (i), we get x=qa, and x=4a
4a 4a

Required area = 2 area of ABCD = 2.[ vy =2% 2_[ ~ax dx
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Solving the equation x>+ y* =g’ and x = 5 we obtain their points of intersection

which are [%,ﬁ%) and [%,—EJ
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Hence, from Fig. 8.9, we get

Required Area =2 Areaof OAB= ZI a —x" dx
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= - (41{ ~3/3 ] sq units.
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Using integration, find the area of the region bounded by the line
2y=5x47, x—axis and the lines x =2 and x =8.

We have 2y =5x+7

= y="—+—
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.. Area of shaded region=

IIHS Tdr=L|5.% ?u !
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Find the area of a minor segment of the circle X+ yz = a’ cut off by the line x = =,
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Draw a rough sketch of the curve y =+/x—1 in the interval [1, 5]. Find the area
under the curve and between the lines x =1 and x=5.

Given equation of the curve is y = Jr-1

=y =x-1
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.. Area of shaded region, A= _[] (x=1)"dx= {%}
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= [% (5= - O] = % Sq unit




