	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT (RELATION AND FUNCTIONS) CLASS XII SC	
1	The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$ is (A) $(2 \sqrt{2}-1)$ sq units (B) $(\sqrt{2}-1)$ sq units (C) $(2 \sqrt{2}+1)$ sq units (D) $(\sqrt{3}-1)$ sq units	
2	Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is (A) π (B) 4π (C) 2π (D) $\frac{\pi}{2}$	1
3	Find the area of the region bounded by the curve $a y^{2}=x^{3}$, the y-axis and the lines $y=a$ and $y=2 a$	
4	Find the area of the region bounded by the curve $y=x^{3}$ and y $=x+6$ and $\mathrm{x}=0$.	2
5	Find the area of a minor segment of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{2}$.	2
6	Find the area of the region included between the parabola $y=\frac{3}{4} x^{2}$ and the line $3 \mathrm{x}-2 \mathrm{y}+12=0$	3
7	Draw a rough sketch of the given curve $y=1+\|x+1\|, x=-3$, $x=3, y=0$ and find the area of the region bounded by them, using integration.	4

