	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA	
	ASSIGNMENT (RELATION AND FUNCTIONS)	
	CLASS XII SC	
1	The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when	1
	$0 \le x \le \frac{\pi}{2}$ is	
	(A) $(2\sqrt{2}-1)$ sq units (B) $(\sqrt{2}-1)$ sq units	
	(C) $\left(2\sqrt{2}+1\right)$ sq units (D) $\left(\sqrt{3}-1\right)$ sq units	
2	Area lying in the first quadrant and bounded by the circle	1
	$x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is	
	(A) π (B) 4π (C) 2π (D) $\frac{\pi}{2}$	
3	Find the area of the region bounded by the curve $ay^2 = x^3$, the	2
	y-axis and the lines y = a and y =2a	
4	Find the area of the region bounded by the curve $y = x^3$ and y	2
	= x + 6 and $x = 0$.	
5	Find the area of a minor segment of the circle $x^2 + y^2 = a^2$ cut	2
	off by the line $x = \frac{a}{2}$.	
6	Find the area of the region included between the	3
	parabola $y = \frac{3}{4}x^2$ and the line 3x - 2y + 12 = 0	
7	Draw a rough sketch of the given curve $y = 1 + x + 1 , x = -3$,	4
	x = 3, $y = 0$ and find the area of the region bounded by them,	
	using integration.	