	BCM SCHOOL BASANT AVENUE FUGRI ROAD LUDHIANA	
	ASSIGNMENT OF CLASS XISC	
1	The distance of the point P $(1, -3)$ from the line $2y - 3x = 4$ is	1
	(A) $\sqrt{13}$ (B) $\frac{1}{\sqrt{13}}$ (C) $\sqrt{13}$ (D)13	
2	The intercept cut off by a line from y-axis is twice than that from x-	1
	axis, and the line passes through the point $(1, 2)$. The equation of	
	the line is	
	(A) $2x + y = 4$ (B) $-2x + y = 4$ (C) $2x + y = -4$ (D) $2x - y = 4$	
3	Show that the points $A(a, 0)$, $B(0, b)$ and $C(3a - 2b)$ are collinear	2
4	Find k so that the line $2x + ky - 9 = 0$ may be perpendicular to $2x + b$	2
	3y – 1 = 0	
5	Assuming that straight lines work as the plane mirror for a point,	2
	find the image of the point (1,2) in the line $x-3y+4=0$	
6	Find the equations of the lines which pass through the point $^{\left(4,5 ight) }$	3
	and make equal angles with the lines $5x-12y+6=0$ and $3x-4y-7=0$	
7	A line is such that its segment between the lines $5x-y+4=0$	4
	and $3x+4y-4=0$ is bisected at the point $(1,5)$ obtain its equation.	