	ANSWER KEY XI MATHS
1	A
2	Α
3	Slope of AB = slope of BC
4	-4/3
5	Let $Q(h,k)$ is the image of the point $P(1,2)$ in the line.
	x-3y+4=0(i)
	Coordinate of midpoint
	of $PQ = \left(\frac{h+1}{2}, \frac{k+2}{2}\right)$ This point will
	satisfy the eq(i) $ \left(\frac{h+1}{2}\right) - 3\left(\frac{k+2}{2}\right) + 4 = 0 $ $ h - 3k = -3(i) $
	(Slope of line PQ) \times (slope of line $x-3y+4=0$) = -1 $\left(\frac{k-2}{h-1}\right)\left(\frac{-1}{-3}\right) = -1$ $3h+k=5(ii)$
	On solving (i) and (ii)
	$h = \frac{6}{5} \text{ and } k = \frac{7}{5}$
6	The slopes of the given lines are $\frac{5}{12}$ and $\frac{3}{4}$
	Let m be the slope of a required line
	ATQ
	$\left \frac{m - \frac{5}{12}}{1 + m.\frac{5}{12}} \right = \left \frac{m - \frac{3}{4}}{1 + m.\frac{3}{4}} \right $
	$\Rightarrow \left \frac{12m - 5}{12 + 5m} \right = \left \frac{4m - 3}{4 + 3m} \right $
	$\frac{12m-5}{12+5m} = \frac{4m-3}{4+3m}$
	$16m^2 = -16$
	$m^2 = -1$
	Neglect

$$\frac{12m-5}{12+5m} = -\frac{4m-3}{4+3m}$$
$$m = \frac{4}{7}, \frac{-7}{4}$$

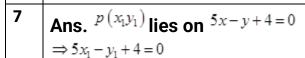
Req. eq. are

$$y-5=\frac{4}{7}(x-4)$$

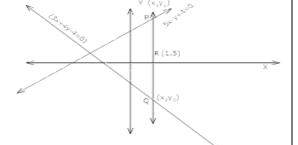
$$4x - 7y + 19 = 0$$

$$y-5=\frac{-7}{4}(x-4)$$

$$7x + 4y - 48 = 0$$



And
$$Q(x_2y_2)$$
 lies on $3x+4y-4=0$
 $3x_2+4y_2-4=0$



On solving

$$y_1 = 5x_1 + 4$$

$$y_2 = \frac{4 - 3x_2}{4}$$

Since R is the mid point of PQ

$$\frac{x_1 + x_2}{2} = 1, \frac{y_1 + y_2}{2} = 5$$

$$x_1 + x_2 = 2, \ y_1 + y_2 = 10$$

On solving

$$x_1 = \frac{26}{23}, \ x_2 = \frac{20}{23}$$

And
$$y_1 = \frac{222}{23}$$
, $y_2 = \frac{8}{23}$

Eq. of PQ

$$y - \frac{222}{23} = \frac{\frac{8}{23} - \frac{222}{23}}{\frac{20}{23} - \frac{26}{23}} \left(x - \frac{26}{23} \right)$$

$$107x - 3y - 92 = 0$$