	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA CLASS XII(MATHS ASSIGNMENT)
1	The feasible solution for an LPP is shown in Figure. Let $Z=3 x-4 y$ be the objective function. Minimum of Z occurs at 1. $(0,8)$ 2. $(0,0)$ 3. $(5,0)$ 4. $(4,10)$
2	Corner points of the feasible region for an LPP are (0,2), (3, $0),(6,0),(6,8)$ and $(0,5)$. Let $F=4 x+6 y$ be the objective function. Maximum of $F-$ Minimum of $F=$ 1. 60 2. 48 3. 42 4. 18
3	A cottage industry manufactures pedestal lamps and wooden shades, each requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer to manufacture a shade. On any day, the sprayer is available for at the most 20 hours and the grinding/cutting machine for at the most 12 hours. The profit forms the sale of a lamp is Rs 5 and that from a shade is Rs 3. Convert the given statement into constraints and objective function
4	Determine the maximum value of $Z=11 \mathrm{x}+7 \mathrm{y}$ subject to the constraints: $2 x+y \leqslant 6, x \leqslant 2, x \geqslant 0, y \geqslant 0 .$ Or Determine graphically the minimum value of the objective function $Z=-50 x+20 y$ subject to the constraints: $2 x-y \geq-5, \quad 3 x+y \geq 3, \quad 2 x-3 y \leq 12, \quad x \geq 0, y \geq 0$
5	Solve the Linear Programming Problem graphically: Minimise $Z=x+2 y$ subject to $2 x+y \geq 3, x+2 y \geq 6, x, y \geq 0$.

| 6 | Show that the minimum of Z occurs at more than two points.
 Minimise and Maximise $\mathrm{Z}=\mathrm{x}+2 \mathrm{y}$ subject to $x+2 y \geq$
 $100,2 x-y \leq 0,2 x+y \leq 200, x, y \geq 0$. |
| :--- | :--- | :--- |
| 7 | A merchant plans to sell two types of personal computers - a
 desktop model and a portable model that will cost Rs 25000
 and Rs 40000 respectively. He estimates that the total
 monthly demand of computers will not exceed 250 units.
 Determine the number of units of each type of computers
 which the merchant should stock to get maximum profit if he
 does not want to invest more than Rs 70 lakhs and if his profit
 on the desktop model is Rs 4500 and on portable model is Rs
 5000 . By using LPP |

