	BCM SCHOOL BASANT AVENUE DUGRI ROAD	
	LUDHIANA	
	ASSIGNMENT XII SC(MATHS)	
	Application of derivative	
1	The function $f(x) = 2x^3 - 3x^2 - 12x + 4$, has	
	(A) two points of local maximum	
	(B) two points of local minimum	
	(C) one maxima and one minima	
	(D) no maxima or minima	
2	The smallest value of the polynomial $x^3 - 18x^2 + 96x$ in [0,	
	9] is	
	(A)0 (B)126 (C)135 (D)160	
3	The sides of an equilateral triangle are increasing at the	
	rate of 2 cm/sec. The rate at which the area increases,	
	when side is 10 cm is:	
	(A) $10\sqrt{3}$ cm ² /s (B) $\sqrt{3}$ cm ² /s (C) $10\sqrt{3}$ cm ² /s (D)no	
	Change in area	
4	A man 2 m tail, walks at the rate of T_3 m/sec towards a streat light which is E^1 m shows the ground. At what rate	
	is tip of his shadow moving? At what rate is the length of	
	the shadow changing when he is 3 ¹ m from the base of	
	the light?	
5	Determine the intervals in which function	
	$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is increasing or decreasing	
6	A kite is moving horizontally at a height of 151.5 meters.	
	If the speed of kite is 10 m/s, how fast is the string being	
	let out; when the kite is 250 m away from the boy who is	
	flying the kite? The height of boy is 1.5 m.	
7	Separate the interval [0, $\pi/2$] into sub-intervals in which	
0	$T(x) = \sin x + \cos x$ is increasing or decreasing.	
8	An open box with a square base is to be made out of a	
	given quantity of caraboard of area c ⁻ . Show that the	

	maximum volume of box is $\frac{C^3}{6\sqrt{3}}$ cubic units.	
9	A telephone company in a town has 500 subscribers on its list and collects fixed observes of $\exists 200/$ per subscriber	
	ner year. The company proposes to increase the annual	
	subscription and it is believed that for every increase of	
	₹ 1/- one subscriber will discontinue the service. Find	
	what increase will bring maximum profit?	
10	A man has an expensive square shape piece of golden board of size 24 cm is to be made into a box without top by cutting from each corner and folding the flaps to form a box. (i)What is the volume of box?	
	(ii)What should be the side of the square piece to be cut from each corner of the board to behold the maximum volume?	
	(iii) What should be the maximum volume of open box?	

