|   | ANSWER KEY OF THREE-DIMENSIONAL GEOMETRY |
|---|------------------------------------------|
| 1 | (C) $\sqrt{b^2 + c^2}$                   |
| 2 | (B)2                                     |
| 3 | (d) $-1$                                 |
| 4 | A)coincident                             |
| 5 | (A) $\vec{r} = \lambda \hat{\imath}$     |
| 6 | (A)-1                                    |
| 7 | (A)                                      |
| 8 | (A)(2 0 0)                               |

$$rac{x+1}{3}=rac{y+3}{5}=rac{z+5}{7}=\lambda \ (say)$$

$$x=3\lambda-1$$
,  $y=5\lambda-3$  and  $z=7\lambda-5$ 

So, the coordinates of a general point on this line are  $(3\lambda-1, 5\lambda-3, 7\lambda-5)$ .

The equation of the second line is given below:

$$rac{x-2}{1}=rac{y-4}{3}=rac{z-6}{5}=\mu \ (say)$$

$$x=\mu+2$$
,  $y=3\mu+4$  and  $z=5\mu+6$ 

So, the coordinates of a general point on this line are ( $\mu$ +2,  $3\mu$ +4,  $5\mu$ +6).

If the lines intersect, then they have a common point.

So, for some values of  $\lambda$  and  $\mu$ , we must have:

$$3\lambda - 1 = \mu + 2$$
,  $5\lambda - 3 = 3\mu + 4$  and  $7\lambda - 5 = 5\mu + 6$ 

$$\Rightarrow$$
 3 $\lambda$ - $\mu$ =3, 5 $\lambda$ -3 $\mu$ =7 and 7 $\lambda$ -5 $\mu$ =11

Solving the first two equations,  $3\lambda-\mu=3$  and  $5\lambda-3\mu=7$ , we get:

 $\lambda$ =1/2 and  $\mu$ =-3/2

Since  $\lambda=1/2$  and  $\mu=-3/2$  satisfy the third equation,  $7\lambda-5\mu=11$ , the given lines intersect each other.

When  $\lambda = 1/2$  in  $(3\lambda - 1, 5\lambda - 3, 7\lambda - 5)$ , the coordinates of the required point of intersection are (1/2, -1/2, -3/2)

11 We have, equation of line as (4-x)/2 = y/6 = (1-z)/3 $\Rightarrow \frac{x-4}{-2} = \frac{y}{6} = \frac{z-1}{-3} = \lambda$  $\Rightarrow x = -2\lambda + 4, y = 6\lambda \text{ and } z = -3\lambda + 1$  $L(4-2\lambda,6\lambda,1-3\lambda) \longrightarrow -2\hat{i}+6\hat{j}-3\hat{k}$ Let the foot of perpendicular from point P(2, 3, -8)on the line is  $L(4-2\lambda, 6\lambda, 1-3\lambda)$ Then the direction ratios of PL are proportional to  $(4-2\lambda-2)$ ,  $6\lambda - 3, 1 - 3\lambda + 8$ ) or  $(2 - 2\lambda, 6\lambda - 3, 9 - 3\lambda)$ Also, direction ratios of line are -2, 6, -3. Since, PL is perpendicular to give line.  $-2(2-2\lambda)+6(6\lambda-3)-3(9-3\lambda)=0$  $-4 + 4\lambda + 36\lambda - 18 - 27 + 9\lambda = 0$  $49\lambda = 49$  $\Rightarrow$  $\lambda = 1$ So, the coordinates of L are  $(4-2\lambda, 6\lambda, 1-3\lambda) \equiv (2, 6, -2)$ . Also, length of  $PL = \sqrt{(2-2)^2 + (6-3)^2 + (-2+8)^2}$  $=\sqrt{0+9+36}=3\sqrt{5}$  units 11 We have, equation of the line as  $(x+5)/1 = (y+3)/4 = (z-6)/-9 = \lambda$  $x = \lambda - 5$ ,  $y = 4\lambda - 3$ ,  $z = 6 - 9\lambda$ Let the coordinates of L are  $(\lambda - 5, 4\lambda - 3, 6 - 9\lambda)$ Then direction ratios of PL are  $(\lambda - 5 - 2, 4\lambda - 3 - 4, 6 - 9\lambda + 1)$ or  $(\lambda - 7, 4\lambda - 7, 7-9\lambda)$ . Also, the direction ratios of given line are 1, 4, -9. Since, PL is perpendicular to the given line.  $(\lambda - 7) \cdot 1 + (4\lambda - 7) \cdot 4 + (7 - 9\lambda) \cdot (-9) = 0$ ..  $\lambda - 7 + 16\lambda - 28 + 81\lambda - 63 = 0$  $98\lambda = 98$  $\Rightarrow$  $\lambda = 1$  $\Rightarrow$ So, the coordinates of L are  $(\lambda - 5, 4\lambda - 3, 6 - 9\lambda) \equiv (-4, 1, -3)$ .

$$Also PL = \sqrt{(-4-2)^2 + (1-4)^2 + (-3+1)^2}$$
$$= \sqrt{36+9+4} = 7 \text{ units}$$



 $\Rightarrow \frac{a+1}{2} = 1$ ,  $\frac{b+6}{2} = 3$ ,  $\frac{c+3}{2} = 5$ 

 $\therefore$  The image of (1, 6, 3) is (1, 0, 7).

 $\Rightarrow$  a = 1, b = 0, c = 7

13 
$$x = py + q, z = ry + s$$

$$\Rightarrow$$
  $y = \frac{x-q}{p}$  and  $y = \frac{z-s}{r}$ 

$$\Rightarrow \frac{x-q}{p} = \frac{y}{1} = \frac{z-s}{r}$$
 (i)

Similarly line x = p'y + q', z = r'y + s'

$$\Rightarrow \frac{x-q'}{p'} = \frac{y}{1} = \frac{z-s'}{r'} \quad (ii)$$

Line (i) is parallel to the vector  $p\hat{i} + \hat{j} + r\hat{k}$ .

Line (ii) is parallel to the vector  $p'\hat{i} + \hat{j} + r'\hat{k}$ .

Line are perpendicular,

$$\therefore (p\hat{i} + \hat{j} + r\hat{k}) \cdot (p'\hat{i} + \hat{j} + r'\hat{k})$$

$$pp'+1+rr'=0.$$

Here 
$$\overrightarrow{a_1} = -3\hat{i} + \hat{j} + 5\hat{k}$$
,  $\overrightarrow{b_1} = -3\hat{i} + \hat{j} + 5\hat{k}$ ,  $\overrightarrow{a_2} = -\hat{i} + 2\hat{j} + 5\hat{k}$ ,  $\overrightarrow{b_2} = -\hat{i} + 2\hat{j} + 5\hat{k}$ 

Now 
$$(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \end{vmatrix} = 2(-5) - 1(-15 + 5) = -10 + 10 = 0$$

: Given lines are coplanar.