	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA CLASS XII (041) MATHS	
1	unit vector. Find angle between \vec{a} and \vec{b}. (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{2}$	${ }^{1}$
${ }^{2}$	If ${ }^{\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=3 \hat{i}+\hat{j}}$ are such that $\bar{a}+\lambda \bar{b}$ is \perp to \bar{c} is then find the value of λ. (A) 8 (B)6 (C) -6 (D) 1	1
3	If ${ }^{\bar{a}, \bar{b}}$ and \bar{c} be three vectors such that $\bar{a}+\bar{b}+\bar{c}=0$ and $\|\vec{a}\|=3,\|\vec{b}\|=5,\|\vec{c}\|=7$ find the angle between \vec{a} and \vec{b}.	2
4	Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\|\vec{a}\|=3,\|\vec{b}\|=4,\|\vec{c}\|=5$ and each one of them being \perp to the sum of the other two, find $\|\vec{a}+\vec{b}+\vec{c}\|$	2
5	If $\begin{gathered}\vec{a}=4 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=5 \hat{i}+2 \hat{j}-3 \hat{k}\end{gathered}$. find the angel between the vectors $\bar{a}+\bar{b}$ and $\vec{a}-\bar{b}$	2
6	If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$ find a vector \hat{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$	
7	If \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ prove that $\vec{a}=$ $\pm 2(\vec{b} \times \vec{c})$.	4

