Answer key and Marking Scheme

	Answers	Marks
	D. The voltage across the LC combination will remain the same.	1
	C. 5 A	1
	A. I/6	1
	A. Lower cost	1
)	D. 920	1
	B. 3	1
!	B. B	1
1	A. Both A and R are true and R is the correct explanation of A	1
Į.	C. A is true but R is false	1
	C. A is true but R is false	1
0.00	(a) Yes. (0.5 marks)	3
	(b) No. (0.5 marks)	
	(c) Since both the speakers are connected to an inductor, the current in an inductive circuit decreases with increasing frequency. Thus, an inductor connected in series with a speaker blocks high-frequency signals and allows low-frequency signals. So both speaker 1 and 2 will deliver low-frequency signals.	
	(1 mark)	
	Correction:	
	If speaker 2 is connected to a capacitor instead of an inductor, the capacitor blocks low-frequency signals and passes high-frequency signals. This is because the current in a capacitive circuit increases with increasing frequency. So speaker 2 connected to a capacitor in series will deliver high-frequency signals, as desired.	
	(1 mark)	
	(a) Radio P will allow the person to hear the radio channel of frequency $f_{\text{o}},$ without the interference of other frequencies. (0.5 marks)	3

	Both f_1 and f_2 do not lie in the bandwidth of the radio P while frequency f_1 lies in the bandwidth of radio Q. (0.5 marks)	
	(b) The maximum current at resonance in an LCR circuit is given by	
	$i_{max} = V/R$	
	Since $i_P > i_Q$, the resistance of circuit used in radio P is less than the resistance of the circuit used in radio Q.	
	(0.5 marks for correct answer and 0.5 marks for correct reason)	
	The resonance frequency $f_0 = 1/(2\pi VLC)$	
	As L and f_{o} is the same for both circuits the capacitance of both circuits will be the same.	
	(0.5 marks for correct answer and 0.5 marks for correct reason.)	
	a. For angular frequency v = 50 Hz	3
	Inductive reactance $X_L = \omega L = 2\pi \times 50 \times 10 \times 10^{-3} = \pi$ ohm	
	$I_{rms} = V_{rms}/X_L = 100/\pi A$	
	[0.5 mark for correct value of I _{rms}]	
	For angular frequency v = 50 kHz	
	Inductive reactance $X'_{L} = \omega L = 2\pi \times 50 \times 10^{3} \times 10 \times 10^{-3} = 1000\pi$ ohm	
	$I'_{rms} = V_{rms}/X_L = 1/10\pi A$	
	[0.5 mark for correct value of I'rms]	
	% decrease in I _{rms}	
	= ΔI _{rms} /I _{rms} x 100	
	= 999π/(10π x 100) x100	
	= 99.9 %	
	[1 mark for correct calculation of % decrease of I _{rms}]	
	b. Bulb glows dimmer.	
	[0.5 mark for correct conclusion]	
y		

Increase in angular frequency increases the inductive reactance that further	
results in the decrease in I _{rms} current flowing through the bulb. Hence the bulb	
glows dimmer.	
[0.5 mark for correct reason explanation]	ıx.
a. 100 ohm Resistor:	4
Voltage across R = $10\sin 100\pi t$	
Current i = V/R	
= 10sin100πt /100	
= $0.1 \sin 100\pi t$	
[0.5 mark for voltage & 0.5 mark for correct expression of current]	
b. 10μF Capacitor:	
Voltage across C = $10\sin 100\pi t$	
Current i = $10\sin 100\pi t / X_c$	
Here $X_c = 1/C\omega = 1000/\pi$ ohm	
Current through $C = i = V/X_c$	
= $10\sin(100\pi t + \pi/2) / (1000/\pi)$	
$= \frac{10 \sin \left(100\pi t + \frac{\pi}{2}\right)}{\left(\frac{1000}{\pi}\right)} = \frac{\pi}{100} \sin \left(100\pi t + \frac{\pi}{2}\right)$	
[0.5 mark for voltage & 1 mark for correct expression of current]	
c. 10mH Inductor :	
Voltage across L = $10sin100\pi t$	
Inductive reactance, X_L = $L\omega$ = 10 x 10^{-3} x 100π = π ohm	
Current through an inductor, $i = V/X_L$	
$=\frac{10}{\pi}\sin(100\pi t-\frac{\pi}{2})$	
[0.5 mark for voltage & 1 mark for correct expression of current]	
In circuit (i):	3

$$I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + \left(\frac{1}{C\omega}\right)^2}}$$

$$I/2 = \frac{V}{Z'} = \frac{V}{\sqrt{R^2 + \left(\frac{3}{C\omega}\right)^2}}$$

Substituting for I,

$$\frac{V}{\sqrt{R^2 + \left(\frac{1}{C\omega}\right)^2}} = \frac{2V}{\sqrt{R^2 + \left(\frac{3}{C\omega}\right)^2}}$$

[1 mark for expression for currents]

Transposing and solving:

$$3R^2 = 5 (1/C\omega)^2 = 5X_C^2$$

 $X_C/R = \sqrt{3}/\sqrt{5}$

[0.5 mark for correct ratio X_C/R]

In circuit (ii):

$$I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + (L\omega)^2}}$$

$$2I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + L^2 \omega^2/9}}$$

Substituting for I,

$$\frac{2V}{\sqrt{R^2 + (L\omega)^2}} = \frac{V}{\sqrt{R^2 + L^2 \omega^2/9}}$$

[1 mark for expression for currents]

Transposing and solving,

 $X_L/R = 3\sqrt{3}/\sqrt{5}$

So the ratio:

 $X_{C} / X_{L} = 1/3$

[0.5 mark for correct final ratio]