	DOM COLLOGI, DACANT AVENUE DUCDI LUDULANA
	BCM SCHOOL BASANT AVENUE DUGRI LUDHIANA
4	ASSIGNMENT APPLICATION OF DERIVATIVE
1	The maximum profit that a company can make, if the profit function is given by
	$P(x) = 41 + 24x - 18x^{2}.$
	(a) 25 (b) 43 (c) 62 (d) 49
2	The sides of an equilateral triangle are increasing at the rate of 2 cm/s. The rate
	at which the area increases, when the side is 10 cm, is
	(a) $\sqrt{3}$ cm2/s (b) 10 cm2/s (c) 10 $\sqrt{3}$ cm2/s (d) $\frac{10}{\sqrt{3}}$ cm2/s
3	The radius of a cylinder is increasing at the rate of 3 m/s and its height is
	decreasing at the rate of 4 m/s. The rate of change of volume when the radius is
	4 m and height is 6 m, is
	(a) 80π cm ³ /s (b) 144π cm ³ /s (c) 80 cm ³ /s (d) 64 cm ³ /s
4	the total revenue received from the sale of x units of a product is given by R(x)
	= $3x^2 + 36x + 5$ in rupees. Find the marginal revenue when $x = 5$, where by
	marginal revenue we mean the rate of change of total revenue with respect to
	the number of items sold at an instant.
5	Find the intervals in which the function given by;
	$f(x) = 3/10 x^4 - 4/5x^3 - 3x^2 + 36/5x + 11$ is
	(i) strictly increasing. (ii) strictly decreasing.
6	An Apache helicopter of enemy is flying along the curve given by $y = x^2 + 7$. A
	soldier, placed at (3, 7), wants to shoot down the helicopter when it is nearest
	to him. Find the nearest distance.
7	A water tank has the shape of an inverted right circular cone with its axis
	vertical and vertex lowermost. Its semi-vertical angle is tan-1 (0.5). Water is
	poured into it at a constant rate of 5 cubic metre per hour. Find the rate at
	which the level of the water is rising at the instant when the depth of water in
	the tank is 4 m.
8	A telephone company in a town has 500 subscribers on its list and collects fixed
	charges of ₹ 300/- per subscriber per year. The company proposes to increase
	the annual subscription and it is believed that for every increase of ₹ 1/- one
	subscriber will discontinue the service. Find what increase will bring maximum
	profit?

9 Case-Study: Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- (i) If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
- (ii) Find the critical point of the function.
- (iii) Use First Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

OR

Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area. (2022-23)

The traffic police have installed Over Speed Violation Detection (OSVD) system at various locations in a city. These cameras can capture a speeding vehicle from a distance of 300 m and even function in the dark.

A camera is installed on a pole at the height of 5 m. It detects a car travelling away from the pole at the speed of 20 m/s. At any point, x m away from the base of the pole, the angle of elevation of the speed camera from the car C is θ . On the basis of the above information, answer the following questions:

- (i) Express θ in terms of height of the camera installed on the pole and x.
- (ii) Find $\frac{d\theta}{dx}$
- (iii) (a) Find the rate of change of angle of elevation with respect to time at an instant when the car is 50 m away from the pole.

(iii)(b) If the rate of change of angle of elevation with respect to time of another car at a distance of 50 m from the base of the pole is 3/101 rad/s, then find the speed of the car.