BCM SCHOOL, BASANT AVENUE, DUGRI

XI-PHYSICS

ASSIGNMENT

CHAPTER- UNITS & MEASUREMENTS

MULTIPLE CHOICE QUESTIONS

Units and Dimensions

- Which of the following statements is correct about a scalar quantity:
 - it remain conserved in a process
 - can never take negative sign
 - (iii) does not vary from one place to another in space
 - (iv) has same value for observers with different orientation of axis
 - (i) (a)

- (ii) (b)
- (111)
- (d) (iv)
- Which of the following is not the unit of time
 - Micro second
- (b) Leap year
- Lunar month
- Parallactic second
- 3. Temperature can be expressed as a derived quantity in terms of any of the following
 - length and mass
- mass and time
- length, mass and time
 - none of these (d)
- With the usual notations, the following equation

$$S_1 = u + \frac{1}{2}a(2t-1)$$
 is

- only numerically correct
- only dimensionally correct
- both numerically and dimensionally correct
- neither numerically nor dimensionally correct
- Which of the following readings is the most accurate 5.
 - 4000 m
- (ii) 40×10^2 m
- (iii) 4×10^3 m (iv) 0.4×10^4 m
- (a) (i)

- (c) (iii)
- If unit of length and force are increased 4 times. The unit of energy:
 - is increased by 4 times
 - is increased by 16 times
 - is increased by 8 times
 - remain unchanged
- 7. Which one of the following is a set of dimensionless physical quantities:
 - strain, specific gravity, angle
 - strain, work, couple
 - work, angle, specific gravity
 - work, energy, frequency

- 8. Which one of the following does not have the same dimensions
 - work and energy
 - angle and strain
 - relative density and refractive index
 - plank constant and energy
- The density of a material in CGS system is 8 g / cm³. In a 9. system of a unit in which unit of length is 5 cm and unit of mass is 20 g. The density of material is:
 - (a)

(b) 20

(c) 50

- (d) 80
- In a new system the unit of mass is α kg, unit of length is β m and unit of time is γ s. The value of 1 J in this new system is [AMU B.Tech. 2012]

- 11. A boy recalls the relation almost correctly but forgets where to put the constant c (speed of light). He writes;

$$m = \frac{m_0}{\sqrt{1 - v^2}}$$
, where m and m_0 stand for masses and v for

speed. Right place of c is

(a)
$$m = \frac{cm_0}{\sqrt{1 - v^2}}$$

(a)
$$m = \frac{cm_0}{\sqrt{1 - v^2}}$$
 (b) $m = \frac{m_0}{c\sqrt{1 - v^2}}$

(c)
$$m = \frac{m_0}{\sqrt{c^2 - v^2}}$$

(c)
$$m = \frac{m_0}{\sqrt{c^2 - v^2}}$$
 (d) $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

The equation of state of some gases can be expressed as $\left(P + \frac{a}{V^2}\right)(V - b) = RT$. Here P is the pressure, V is the

volume, T is the absolute temperature and a, b, R are constants. The dimensions of a are:

- (a) $ML^5 T^{-2}$
- (c) $M^0L^3T^0$