	BCM SCHOOL BASNNT AVENUE DUGRI LUDHIANA	
	ASSIGNMENT XI SC	
1	The total number of words formed by 2 vowels and 3 consonants taken from 4	С
	vowels and 5 consonants is	
	(a) 60 (b) 120 (c) 7200 (d) 720	_
2	Everybody in a room shakes hands with everybody else. If the total number of	В
	handshakes is 66, then the total number of persons in the room is (a) 11 (b) 12 (c) 13 (d) 14	
3	(a) 11 (b) 12 (c) 13 (d) 14 The number of triangles that are formed by choosing the vertices from a set of	D
3	12 points, seven of which lie on the same line is	D
	(a) 105 (b) 15 (c) 175 (d) 185	
4	The number of parallelograms that can be formed form a set of four parallel	В
	lines intersecting another set of three parallel lines is	
	(a) 6 (b) 18 (c) 12 (d) 9	
5	The number of words which can be formed out of the letters of the word	В
	ARTICLE, so that vowels occupy the even place is	
	(a) 1440 (b) 144 (c) 7! (d) ⁴ C ₄ x ³ C ₃	
6	Eight chairs are numbered 1 to 8. Two women and 3 men wish to occupy one	
	chair each. First the women choose the chairs from amongst the chairs 1 to 4	
	and then men select from the remaining chairs. Find the total number of	
	possible arrangements. Sol. First the women choose the chairs from amongst the chairs numbered 1 to	
	4.	
	Two women can be arranged in 4 chairs in 4P_2 ways.	
	In remaining 6 chairs, 3 men can be arranged in 6P_3 ways.	
	\therefore Total number of possible arrangements = ${}^4P_2 \times {}^6P_3 = \frac{4!}{2!} \times \frac{6!}{3!}$	
	$= 4 \times 3 \times 6 \times 5 \times 4 = 1440$	
7	If the letters of the word RACHIT are arranged in all possible ways as listed in	
	dictionary, then what is the rank of the word RACHIT?	
	Sol: The alphabetical order of the letters of the word RACHIT is: A, C, H, I, R, T. Number	
	of words beginning with A = 5!	
	Number of words beginning with C = 5!	
	Number of words beginning with H = 5!	
	Number of words beginning with 1 = 5! Clearly, the first word beginning with R is RACHIT.	
	. •. Rank of the word RACHIT in dictionary = 4×5! + 1= 4 x120+1= 481	
	Name of the word recent in dictionally - 405: 1 1-4 X12071-401	
8	Out of 18 points in a plane, no three are in the same line except five points	
	which are collinear. Find the number of lines that can be formed joining the	
	point.	

Sol: There are 18 point in a plane, of which 5 points are collinear.

Number of straight lines formed by joining the 18 points taking 2 at a time = ${}^{18}C_2$

Now, number of straight lines formed by joining 5 points which are collinear taking 2 at a time = 5C_2 CRSELabs.com

But 5 collinear points, when joined pairwise, give only one line.

:. Required number of straight lines = ${}^{18}C_2 - {}^{5}C_2 + 1 = 153 - 10 + 1 = 144$

9 We wish to select 6 persons from 8 but, if the person A is chosen, then B must be chosen. In how many ways can selections be made?

Sol: Total number of persons = 8

Number of person to be selected = 6

It is given that, if A is chosen then, B must be chosen. Therefore, following cases arise:

Number of persons to be chosen out of 8=6

CASE I:When A is chosen, B must be chosen

Number of ways of selecting 4 more persons from remaining 6 persons= $^{8-2}$

CASE II:When A is not chosen

Number of ways of selecting 6 persons from remaining 7 persons= $7C_6=7$

Total ways=15 + 7 = 22

How many automobile license plates can be made, if each plate contains two different letters followed by three different digits?
Sol: There are 26 English alphabets and 10 digits (0 to 9).
It is given that each plate contains two different letters followed by three different digits.

Each plate contains 2 different letters followed by 3 different digits

Arrangement of 26 letters taken 2 at a time= $^{26}P_2=26*25=650$

Arrangementof 10 digits taken 3 at a time= $^{10}P_3 = 10*9*8 = 720$

Total number of license plates=650 * 720 = 468000

- Find the number of different words that can be formed from the letters of the
- 1 word TRIANGLE, so that no vowels are together.

Sol: Given word is: TRIANGLE Consonants are: T, R, N, G, L Vowels are: I, A, E Since we have to form words in such a way that no two vowels are together, we first arrange consonants.

	Five concenents can be arranged in Fl ways
	Five consonants can be arranged in 5! ways.
	$\times C \times C$
	Arrangements of consonants (in the fig. marked as C) creates six gaps marked as 'x'
	Now three vowels can be arranged in any three of these 6 gaps in ${}^{6}P_{3}$ ways.
	So, total number of arrangements = $5! \times {}^{6}P_{3} = 120 \times 120 = 14400$
1	If ${}^{n}C_{r-1}$ = 36 ${}^{n}C_{r}$ = 84 and ${}^{n}C_{r+1}$ = 126, then find the value
2	of rC ₂ .
1	Find the number of permutations of n distinct things taken r together, in
3	which 3 particular things must occur together.
1	Find the number of different words that can be formed from the letters of the
4	word TRIANGLE, so that no vowels are together.
1	There are 10 lamps in a hall each one of them can be switched on
5	independently. Find the number of ways in which the hall can be illuminated.
	Sol: There are 10 lamps in a hall.
	The hall can be illuminated if at least one lamp is switched.
	.•. Total number of ways = ${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_{10}$
	$= 2^{10} - 1 = 1024 - 1 = 1023$