	ANSWER KEY CLASS XII MATHS	
1	A	
2	C	
3	Set A is the set of all books in the library of a college. $R=\{(x, y): x$ and y have the same number of pages $\}$ Now, R is reflexive since $(x, x) \in R$ as x and x has the same number of pages. Let $(x, y) \in R \Rightarrow x$ and y have the same number of pages. $\Rightarrow y$ and x have the same number of pages. $\Rightarrow(\mathrm{y}, \mathrm{x}) \in \mathrm{R}$ $\therefore \mathrm{R}$ is symmetric. Now, let $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ and $(\mathrm{y}, \mathrm{z}) \in \mathrm{R}$ $\Rightarrow x$ and y and have the same number of pages and y and z have the same number of pages. $\Rightarrow \mathrm{x}$ and z have the same numbers of pages. $\Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{R}$ $\therefore \mathrm{R}$ is transitive. Hence, R is an equivalence relation.	
4	R is an equivalance relation if R is reflexive,symmetric and transitive. a)checking if it is reflexive; Given R in A \times Aand $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ suchthata+d=b+c For reflexive,consider $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{a}, \mathrm{b})(\mathrm{a}, \mathrm{b}) \in \mathrm{A}$ and applying given condition $\Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$; which is true for all A \therefore Risreflexive. b)checking if it is symmetric; given $(a, b) R(c, d)$ suchthata $+d=b+c$	

	consider (c, d) $\mathrm{R}(\mathrm{a}, \mathrm{b}) \mathrm{onA} \times \mathrm{A}$ applying given condition $\Rightarrow c+b=d+a w h i c h s a t i s f i e s g i v e n c o n d i t i o n ~$ Hence R is symmetric. c)checking if it is transitive; $\operatorname{Let}(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \operatorname{and}(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{e}, \mathrm{f})$ $\operatorname{and}(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{e}, \mathrm{f}) \in \mathrm{A} \times \mathrm{A}$ applying given condition: $\Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} \rightarrow 1$ andc $+\mathrm{f}=\mathrm{d}+\mathrm{e} \rightarrow 2$ equation $1 \Rightarrow a-c=b-d$ nowaddequation1and2; $\Rightarrow \mathrm{a}-\mathrm{c}+\mathrm{c}+\mathrm{f}=\mathrm{b}-\mathrm{d}+\mathrm{d}+\mathrm{e}$ $\Rightarrow \mathrm{a}+\mathrm{f}=\mathrm{b}+\mathrm{e}$ $\therefore(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f})$ also satisfies the condition Hence R is transitive.
5	We have $g o f(x)=g((3 x+4) /(5 x-7))=(7((3 x+4) /(5 x-7))+$ $4) /(5((7 x+4) /(5 x-7))-3)=(21 x+28+20 x-28) /(15 x+20-$ $15 x+21)=41 x / 41=x$ Similarly, $f \circ g(x)=f((7 x+4) /(5 x-3))=(3(7 x+4) /(5 x-3))+4) /(5(7 x+$ 4) $/(5 x-3))-7)=(21 x+12+20 x-12) /(35 x+20-35 x+21)=$ $41 x / 41=x$ Thus, gof $(x)=x, \forall x \in B$ and fog $(x)=x, \forall x \in A$, which implies that gof = IB and fog = IA.

```
\(6 \quad\) We have, the function \(f: R \rightarrow R\) defined by
\(f(x)=\frac{x}{x^{2}+1} \forall x \in R\)
For one-one:
Let \(x_{1}, x_{2} \in R\)
Now,
\(f\left(x_{1}\right)=f\left(x_{2}\right)\)
\(\Rightarrow \frac{x_{1}}{x_{1}^{2}+1}=\frac{x_{2}}{x_{2}^{2}+1}\)
\(\Rightarrow x_{1} x_{2}^{2}+x_{1}=x_{2} x_{1}^{2}+x_{2}\)
\(\Rightarrow x_{1} x_{2}^{2}-x_{2} x_{1}^{2}+x_{1}-x_{2}=0\)
\(\Rightarrow-x_{1} x_{2}\left[x_{1}-x_{2}\right]+\left(x_{1}-x_{2}\right)=0\)
\(\Rightarrow\left(x_{1}-x_{2}\right)\left(1-x_{1} x_{2}\right)=0\)
\(\Rightarrow x_{1}=x_{2}\) or \(x_{1} x_{2}=1\)
\(\Rightarrow x_{1}=x_{2}\) or \(x_{1} x_{2}=1\)
```

But, there exists some values of x_{1} and x_{2} so that $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$

Like $x_{1}=2$ and $x_{2}=\frac{1}{2}$ then,
$f\left(x_{1}\right)=\frac{2}{5}$ and $f\left(x_{2}\right)=\frac{2}{5}$ but $x_{1} \neq x_{2}$

Hence, $f(x)$ is not one-one.

For onto:
Again, consider a value ' 1 ' as element in co-domain R.
$\Rightarrow \frac{x}{x^{2}+1}=1$
$\Rightarrow x^{2}+1=x$

| | i.e., quadratic equation in x |
| :--- | :--- | :--- |
| Here, discriminant D < 0. | |
| Hnece, there is no real value of $\mathrm{x} \in \mathrm{R}$ for which $\mathrm{f}(\mathrm{x})=1$. | |
| $\therefore \mathrm{f}$ is not an onto function. | |
| Thus, f is neither one-one nor onto. | |

