	BCM SCHOOL LUDHIANA
	CLASS XII
	APPLICATION OF INTEGRALS
1	Compute the area bounded by the lines $x + 2y = 2$,
	y - x = 1 and $2x + y = 7$.
2	The area between $x = y^2$ and $x = 4$ is divided into equal
	parts by the line $x = a$, find the value of a.
3	Find the area between the curve $y = x + 3 $, the x – axis and
	the lines x = -6 and x = 0.
4	Draw a rough sketch of the given curve $y = 1 + x + 1 $, $x =$
	-3, $x = 3$, $y = 0$ and find the area of the region bounded by
	them, using integration
5	Using integration, find the area of the region bounded by
	the line $2y = 5x + 7$, x - axis and the lines $x = 2$ and $x = 8$.
6	Sketch the region $\{(x, 0): y = \sqrt{4 - x^2}\}$ and x-axis. Find the
	area of the region using integration.
7	Find the area enclosed by the curve x=3 cost, y=2sint.
8	Find the area of the region bounded by the curves $x =$
	at^2 at and $y = 2at$ at between the ordinate
	corresponding to t=1 and t =2.
9	Find the area of a minor segment of the circle
	$x^2 + y^2 = a^2$ cut off by the line $\frac{a}{2}$.
10	Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval
	[1,5]. Find the area under the curve and between the lines
	x=1 and x =5.
11	Using method of integration find the area of the triangle
	ABC, coordinates of whose vertices are A (2, 0), B (4, 5)
	and C (6, 3).