BCM SCHOOL, BASANT AVENUE, DUGRI, LUDHIANA. OCTOBER ASSIGNEMENT- ANSWER KEY CLASS- X (MATHEMATICS) TOPICS: TRIANGLES & SURFACE AREA AND VOLUME.		
1.	SECTION –A (MULTIPLE CHOICE QUESTIONS) (d) △ABC ~ △DFE	
2.		
2. 3.	(b) $\angle B = \angle D$	
э.	(c) $4\pi rh + 2\pi r^2$	
4.		
	Here $AD = 6x - 7$, $DB = 4x - 3$,	
	AE = 3x - 3, EC = 2x - 1	
	·· DE BC	
	By BPT $rac{\mathrm{AD}}{\mathrm{DB}} = rac{\mathrm{AE}}{\mathrm{EC}}$	
	$\frac{6x-7}{4x-3} = \frac{3x-3}{2x-1}$	
	4x-3 $2x-1On solving we get x = 2.$	
	off Solving we get x = 2.	
5.	Radius of cone = edge of cube/2=14/2 cm = 7 cm	
	Height of cone = edge of cube = 14 cm. L = $7\sqrt{5}cm$	
	$L = 7\sqrt{5cm}$ Surface area of remaining solid = S.A. of cube – S.A. of circular base of cone + Lateral	
	S.A. of cone = $6a^2 - \pi r^2 + \pi rl$	
	Answer = $(1022 + 154\sqrt{5})$ cm ²	
SECTION – C (3 MARKS QUESTIONS) 6. 3/4 × Vol. of conical vessel = Vol. of cylindrical vessel		
01	H = 1.5 cm	
7.	$Pa \perp AC ext{and} QB \perp AC \Rightarrow QB \mid \mid PA.$	
	Thus, in $\Delta PAC, QB \mid \mid PA$, So, ΔQBC ~ ΔPAC .	
	$\therefore rac{QB}{PA} = rac{BC}{AC} \Rightarrow rac{z}{x} = rac{b}{a+b}(i)$ [bu the property of similar Δ]	
	In $\Delta RAC, QB \mid \mid RC$, So, ΔQBA - ΔRAC .	
	$\therefore rac{QB}{RC} = rac{AB}{AC} \Rightarrow rac{z}{y} = rac{a}{a+b}(ii)$ [by the propert of similar Δ]	
	From (i) and (ii), we get	
	$rac{z}{x}+rac{z}{y}=\left(rac{b}{a+b}+rac{a}{a+b} ight)=1$	
	$\Rightarrow \frac{z}{x} + \frac{z}{y} = 1 \Rightarrow \frac{1}{x} + \frac{1}{x} + \frac{1}{y} = \frac{1}{z}$	
	Hence, $rac{1}{x}+rac{1}{y}=rac{1}{z}$	
	SECTION – D (5 MARKS QUESTIONS)	

8.	ΔDEM and ΔCBM are congruent	
	By CPCT, DE = BC but AE = AD + DE	
	= AD + BC	
	\Rightarrow AE = 2BC	
	Now, ∆AEL ~ ∆CBL [By AA similarity]	
	$\frac{AE}{BC} = \frac{EL}{BL}$	
	BC = BL	
	2BC EL	
	$\frac{2BC}{BC} = \frac{EL}{BL}$	
	EL = 2 BL	
9.	Volume of liquid in vessel = Volume of liquid in cone + Volume of liquid in cylinder to a	
	height of 3 cm , on solving answer = 924 cm^3	
	On turning upside down this 924 cm3 of liquid is poured in cylinder.	
	Let 'H' cm be the height to which liquid reaches in cylindrical vessel.	
	⇒ Volume of liquid column of height 'H' cm in cylinder = 924 cm ³ ⇒ $\pi \times (7)^2 \times H = 924$	
	H = 6 cm	
SECTION – E (CASE STUDY)		
10.	a) Total surface area of boiler	
	= SA of cylindrical part + SA of two hemisphere	
	$= 6\pi r^2 + 2\left(\frac{4\pi r^2}{2}\right) = 6\pi r^2 + 4\pi r^2 = 10\pi r^2$	
	b)	
	Volume of boiler,	
	= Volume of cylinder+ Volume of two hemisphere	
	$=\pi r^{2}l+2\left(\frac{2\pi}{3}\times r^{3}\right)=\pi r^{2}\cdot 3r+\frac{4\pi}{3}\times r^{3}=\left(3+\frac{4}{3}\right)\pi r^{3}=\frac{13}{3}\pi r^{3}$	
	c) Ratio of volume to the surface $=\frac{\frac{13}{3}\pi r^3}{10\pi r^2} = \frac{13}{30}r$	