	BCM SCHOOL, BASANT AVENUE, DUGRI, LUDHIANA CLASS-X (MATHEMATICS) ASSIGNMENT(NOVEMBER,2023) TOPIC: COORDINATE GEOMETRY	
1.	B	1
2.	C	1
3.	B	1
4.	Let the given points be: $A(-2,-5)=\left(x_{1}, y_{1}\right) \quad B(6,3)=\left(x_{2}, y_{2}\right)$ The line $x-3 y=0$ divides the line segment joining the points A and B in the ratio k : 1 . Using section formula, $x=(6 k-2) /(k+1) \text { and } y=(3 k-5) /(k+1)$ Here, the point of division lies on the line $x-3 y=0$. Thus, $\begin{aligned} & {[(6 k-2) /(k+1)]-3[(3 k-5) /(k+1)]=0} \\ & k=13 / 3 \end{aligned}$ Therefore, $\begin{aligned} & x=[6(13 / 3)-2] /[(13 / 3)+1] \\ & =(78-6) /(13+3) \\ & =72 / 16 \\ & =9 / 2 \\ & \text { And } y=[3(13 / 3)-5] /[(13 / 3)+1] \\ & =(39-15) /(13+3) \\ & =24 / 16 \\ & =3 / 2 \end{aligned}$ Therefore, the coordinates of the point of intersection $=(9 / 2,3 / 2)$.	2
5.	Two vertices of $\triangle A B C$ are $A(-1,4)$ and $B(5,2)$. Let the third vertex be $C(a, b)$ Then the co-ordinates of its centroid are $\begin{aligned} & C=(-1+5+a) / 3,(4+2+b) / 3 \\ & C=(4+a) / 3,(6+b) / 3 \end{aligned}$ But it is given that $G(0,-3)$ is the centroid. Therefore $\begin{aligned} & 0=(4+a) / 3,-3=(6+b) / 3 \\ & 0 \quad a=-4,-9-6=b \\ & 0 \quad a=-4, b=-15 \end{aligned}$ Therefore, the third vertex of $\Delta A B C$ is $C(-4,-15)$	3

6. Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be the vertices of $\triangle \mathrm{ABC}$

We have D is the midpoint of $A B \Rightarrow(3,4)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=6$ \qquad (1)
and $y_{1}+y_{2}=8$ \qquad
E is the midpoint of $B C \Rightarrow(8,9)=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
$\Rightarrow \mathrm{x}_{2}+\mathrm{x}_{3}=16$ \qquad
and $y_{2}+y_{3}=18$
F is the midpoint of $A C \Rightarrow(6,7)=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{3}=12$
and $\mathrm{y}_{1}+\mathrm{y}_{3}=14$
Equation (1) - (3) we get
$\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{2}-\mathrm{x}_{3}=6-16$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{3}=-10$
Equation (5) + (7) we get
$\mathrm{x}_{1}+\mathrm{x}_{3}+\mathrm{x}_{1}-\mathrm{x}_{3}=12-10=2$
$\Rightarrow 2 \mathrm{x}_{1}=2$ or $\mathrm{x}_{1}=1$
Substituting the value of $\mathrm{x}_{1}=1$ in eqn(1) we get
$\mathrm{x}_{1}+\mathrm{x}_{2}=6$ or $\mathrm{x}_{2}=6-1=5$
Substituting the value of $\mathrm{x}_{1}=1$ in eqn(5) we get
$\mathrm{x}_{1}+\mathrm{x}_{3}=12$ or $\mathrm{x}_{3}=12-1=11$
Equation (2) - (4) we get
$\mathrm{y}_{1}+\mathrm{y}_{2}-\mathrm{y}_{2}-\mathrm{y}_{3}=8-18$
$\Rightarrow y_{1}-y_{3}=-10$
Add equations (8) and (6) we get
$\mathrm{y}_{1}-\mathrm{y}_{3}+\mathrm{y}_{1}+\mathrm{y}_{3}=-10+14$
$\Rightarrow \mathrm{y}_{1}=2$
From (2) $y_{1}+y_{2}=8$ or $y_{2}=8-2=6$
From (4) $y_{1}+y_{3}=18$ or $y_{3}=18-2=16$
\therefore the co-ordinates of vertices of $\triangle \mathrm{ABC}$ is $\mathrm{A}(1,2),(5,6), \mathrm{C}(11,16)$
7. A) the required point is $(1 / 2,0)$
B) the required point is $(0,1)$
C) \& D) DO IT YOURSELF

