BCM SCHOOL, BASANT AVENUE, DUGRI, LUDHIANA CLASS-X (MATHEMATICS) ASSIGNMENT(NOVEMBER,2023) TOPIC: COORDINATE GEOMETRY

	TOPIC: COORDINATE GEOMETRY	
1.	В	1
2.	С	1
3.	В	1
4.	Let the given points be:	2
	$A(-2, -5) = (x_1, y_1)$ $B(6, 3) = (x_2, y_2)$	
	The line $x - 3y = 0$ divides the line segment joining the points A and B in the	
	ratio k : 1.	
	Using section formula,	
	x = (6k - 2)/(k + 1) and $y = (3k - 5)/(k + 1)$	
	Here, the point of division lies on the line $x - 3y = 0$.	
	[(6k-2)/(k+1)] - 3[(3k-5)/(k+1)] = 0	
	k = 13/3	
	Therefore,	
	$x = \frac{[6(13/3) - 2]}{[(13/3) + 1]}$	
	=(78-6)/(13+3)	
	=72/16	
	= 9/2	
	And $y = [3(13/3) - 5] / [(13/3) + 1]$	
	=(39-15)/(13+3)	
	= 24/16	
	= 3/2	
	Therefore, the coordinates of the point of intersection = $(9/2, 3/2)$.	
5	Two vertices of AABC are $A(-1,4)$ and $B(5,2)$. Let the third vertex be $C(a,b)$	3
5.	Then the co-ordinates of its centroid are	3
	C = (-1+5+a)/3.(4+2+b)/3	
	C = (4+a)/3 (6+b)/3	
	But it is given that $G(0 - 3)$ is the centroid Therefore	
	0=(4+a)/3 - 3=(6+b)/3	
	2 a=-4, -9-6=b	
	a = -4, b = -15	
	Therefore, the third vertex of \triangle ABC is C(-4,-15)	

6.	Let A (x_1, y_1) , B (x_2, y_2) , C (x_3, y_3) be the vertices of $\triangle ABC$	3
	We have D is the midpoint of AB \Rightarrow (3, 4) = $(\frac{X_1 + X_2}{Z_1 + Z_2}, \frac{Y_1 + Y_2}{Z_1 + Z_2})$	
	$\Rightarrow \mathbf{x}_1 + \mathbf{x}_2 = 6 (1)$	
	$\Rightarrow x_1 + x_2 = 0$ (1) and $y + y = 8$ (2)	
	$x_2 + x_2 - y_2 + y_2$	
	E is the midpoint of BC \Rightarrow (8,9) = $(\frac{2}{2}, \frac{3}{2})$	
	$\Rightarrow x_2 + x_3 = 16$ (3)	
	and $y_2 + y_3 = 18$ (4)	
	F is the midpoint of AC \Rightarrow (6, 7) = $(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2})$	
	$\Rightarrow x_1 + x_3 = 12 \dots (5)$	
	and $y_1 + y_3 = 14$ (6)	
	Equation $(1) - (3)$ we get	
	$x_1 + x_2 - x_2 - x_3 = 6 - 16$	
	$\Rightarrow x_1 - x_3 = -10 \dots(7)$	
	Equation $(5) + (7)$ we get	
	$x_1 + x_3 + x_1 - x_3 = 12 - 10 = 2$	
	$\Rightarrow 2X_1 = 2 \text{ or } X_1 = 1$	
	Substituting the value of $x_1 = 1$ in eqn(1) we get	
	$x_1 + x_2 = 6 \text{ or } x_2 = 6 - 1 = 5$	
	Substituting the value of $x_1 = 1$ in eqn(5) we get	
	$X_1 + X_3 = 12 \text{ or } X_3 = 12 - 1 = 11$	
	Equation (2) $-$ (4) we get	
	$y_1 + y_2 - y_2 - y_3 = 0 - 10$	
	$\Rightarrow y_1 - y_310$ (0) Add equations (8) and (6) we get	
	V = V + V + V = -10 + 14	
	$y_1 y_3 + y_1 + y_3 = 10 + 14$ $\Rightarrow v_1 = 2$	
	From (2) $v_1 + v_2 = 8$ or $v_2 = 8 - 2 = 6$	
	From (4) $v_1 + v_2 = 18$ or $v_2 = 18 - 2 = 16$	
	\therefore the co-ordinates of vertices of \land ABC is A (1, 2), (5, 6), C (11, 16)	
7.	A) the required point is $(1/2, 0)$	4
	B) the required point is (0,1) C) & D) DO IT YOURSELF	