BCM SCHOOL ,BASANT AVENUE ,DUGRI ROAD ,LUDHIANA
 CLASS: IX
 SUBJECT - MATHEMATICS
 CHAPTER - QUADRILATERAL
 ANSWER KEY OF ASSIGNMENT- 2

Sol 1. (d) Trapezium
Sol 2. (c) Opposite angles are bisected by the diagonals
Sol 3. (b) a rectangle
Sol 4. c) Assertion is correct but reason is false.
Sol 5. $\angle \mathrm{C}=\angle \mathrm{A}=63^{\circ}$ (opposite angles of parallogram are equal)

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{G}=180^{\circ} \text { (Adjacent angles are supplementary) } \\
& \angle \mathrm{G}=117^{\circ}
\end{aligned}
$$

Sol 6. Let ABCD be a parallelogram.
Consider two adjacent angles $\angle \mathrm{A}$ and $\angle \mathrm{B}$
$\angle A+\angle B=180^{\circ}$
[Adjacent angles of parallelogram are supplementary]
$\frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{B}}{2}=90^{\circ} \quad[$ Angular bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$]
$\frac{\angle A}{2}+\frac{\angle B}{2}+\angle C=180^{\circ}$
So, $\angle \mathrm{C}=90^{\circ}$

Sol 7. $\mathrm{QM}=\mathrm{MT}=\frac{1}{2} \mathrm{QT}$ (converse of midpoint theorem)
and $\mathrm{QT}=\frac{1}{2} \mathrm{PQ}$
So, $\mathrm{QM}=\frac{1}{2} \times \frac{1}{2} \mathrm{PQ}$
$Q M=\frac{1}{4} P Q$
Sol 8. (i) 3 cm
(ii) 260 m
(iii) Prove by SAS rule or SSS rule

