BCM SCHOOL, BASANT AVENUE, DUGRI ROAD, LUDHIANA CLASS -X (MATHEMATICS) Answer Key - Assignment 1(Triangles and Probability)					
1.	(c) BD.CD $=\mathrm{AD}^{2}$				
2.	(a) 0.0001				
3.	(c) $3 / 7$				
4.	b) both assertion and reason are correct but reason is not correct explanation for assertion.				
5.	Here, AD/DB=AE/EC [Given] $\Rightarrow \mathrm{DE} \\| \mathrm{BC}$ [By converse of Basic Proportionality Theorem] Now, $\angle \mathrm{D}=\angle \mathrm{B}$ [Corresponding angle] $\angle \mathrm{E}=\angle \mathrm{C}$ But $\angle \mathrm{D}=\angle \mathrm{E}$ [Given] $\text { Hence } \angle \mathrm{B}=\angle \mathrm{C}$ $\therefore \mathrm{AB}=\mathrm{AC}$ [Sides opp. to equal angles of a Δ are equal] $\therefore \Delta \mathrm{BAC}$ is an isosceles Δ.				
6.	Here $\mathrm{BA} \\| \mathrm{XM} \Rightarrow \mathrm{BN}\| \| \mathrm{XM}$ and $\mathrm{CA} \\| \mathrm{XN} \Rightarrow \mathrm{CM}\| \| \mathrm{XN}$ Now in TMX, BN\|	XM \therefore By Corollary to B.P.T., we have TB/TX=TN/TM \qquad (i) Again, in TMC, XN \|	CM By using corollary to B.P.T., we have TX/TC=TN/TM From (i) and (ii), we get TX/TC=TB/TX $\Rightarrow \mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$		
7.	Proof: In $\triangle \mathrm{MDE}$ and $\triangle \mathrm{MCB}$				

	In $\triangle \mathrm{BLC}$ and $\triangle E L A$, $\begin{aligned} & \quad \angle 5=\angle 6 \\ & \text { and } \quad \angle 7=\angle 8 \\ & \therefore \quad \triangle \mathrm{BLC} \\ & \sim \quad \triangle \mathrm{ELA} \\ & \Rightarrow \quad \frac{\mathrm{BL}}{\mathrm{EL}} \end{aligned}=\frac{\mathrm{LC}}{\mathrm{LA}}=\frac{\mathrm{BC}}{\mathrm{AE}} \Rightarrow \frac{\mathrm{BL}}{\mathrm{EL}}=\frac{\mathrm{BC}}{\mathrm{AE}} \Rightarrow \frac{\mathrm{BL}}{\mathrm{EL}}=\frac{\mathrm{BC}}{2 \mathrm{AD}}, \quad \frac{\mathrm{BL}}{\mathrm{EL}}=\frac{\mathrm{AD}}{2 \mathrm{AD}} .$ [Alt. int. angles [Vertically opposite angles [AA similarity $[\because \mathrm{BC}=\mathrm{AD}$
8.	Case study: Since, every student get one chocolate. So, number of chocolates Rohit has is equal to the number of students in the class. (a) Let number of milk chocolates Rohit has $=x$ Probability of distributing milk chocolates $=1 / 3$ $\begin{aligned} & x / 54=1 / 3 \\ & x=18 \end{aligned}$ (b) Let number of dark chocolates Rohit has $=\mathrm{y}$ Probability of distributing dark chocolates $=4 / 9$ $\begin{aligned} & y / 54=4 / 9 \\ & y=24 \end{aligned}$ (c) Number of white chocolates Rohit has $=54-(18+24)=12$ Required probability $=12 / 54=2 / 9$

