BCM SCHOOL, BASANT AVENUE, DUGRI ROAD, LUDHIANA CLASS -X (MATHEMATICS) Answer Key - Assignment 1(Triangles and Probability)

1.	(c) BD.CD = AD^2			
2.	(a) 0.0001			
3.	(c) 3/7			
4.	b) both assertion and reason are correct but reason is not correct explanation for assertion.			
5.	Here, AD/DB=AE/EC [G \Rightarrow DE BC [By converse of Basic Pr Now, $\angle D = \angle B$ [Correspondence $\angle E = \angle C$ But $\angle D = \angle E$ [Given] Hence $\angle B = \angle C$ \therefore AB = AC [Sides opp. to equal angle $\therefore \Delta BAC$ is an isosceles Δ	iven] coportionality Theorem] onding angle] les of a Δ are equal]		
6.	Here BA XM \Rightarrow BN and CA XN \Rightarrow CM XM Now in TMX, BN XM \therefore By Corollary to B.P.T. TB/TX=TN/TM Again, in TMC, XN CM By using corollary to B TX/TC=TN/TM From (i) and (ii), we ge TX/TC=TB/TX \Rightarrow TX ² = TB × TC	XM I , we have (i) I .P.T., we have et		
7.	Proof: In \triangle MDE and \triangle	МСВ		
	DM = CM	[Given]		
	$\angle 1 = \angle 2$	[Vertically opposite]	A D E	
	$\angle 3 = \angle 4$ [:: BC AE and DC is a transversal] [Alt. int $\angle s$]			
	$\therefore \Delta MDE \cong \Delta MCB$	[ASA Congruency]	T M	
	DE = BC	[CPCT] (i)	8 2	
	Also $BC = AD$	(ii)	B C	
	(Opposite sides of the parallelogram)			
	\therefore AD = DE		[On equating (i) and (ii)]	
	Now, $AE = AD + DE$			
	\Rightarrow AE = 2AD		[Put DE = AD]	

	In Δ BLC and Δ ELA,	
	$\angle 5 = \angle 6$	[Alt. int. angles
	and $\angle 7 = \angle 8$	[Vertically opposite angles
	$\therefore \Delta BLC \sim \Delta ELA$	[AA similarity
	$\Rightarrow \frac{BL}{EL} = \frac{LC}{LA} = \frac{BC}{AE} \Rightarrow \frac{BL}{EL} = \frac{BC}{AE} \Rightarrow \frac{BL}{EL} = \frac{BC}{2AD}$	
	$\Rightarrow \frac{BL}{EL} = \frac{AD}{2AD}$	[:: BC = AD
	$\Rightarrow \frac{BL}{EL} = \frac{1}{2} \Rightarrow EL = 2BL$	
8.	Case study: Since, every student get one chocolate. So, number of chocola number of students in the class. (a) Let number of milk chocolates Rohit has = x Probability of distributing milk chocolates = $1/3$ x/54 = 1/3 x = 18 (b) Let number of dark chocolates Rohit has = y Probability of distributing dark chocolates = $4/9$ y/54 = 4/9 y = 24 (c) Number of white chocolates Rohit has = $54 - (18 + 24) = 12$ Required probability = $12/54 = 2/9$	tes Rohit has is equal to the