	ANSWER KEY XISC
1	D
2	A
3	$\begin{aligned} & \text { (i) } n(A)=n(A-B)+n(A \cap B) \\ & =14+x+x \\ & =14+2 x \\ & N(B)=n(B-A)+n(A \cap B) \\ & =3 x+x \\ & =4 x \\ & \text { but } n(A)=n(B)(\text { Given }) \\ & 14+2 x=4 x \\ & x=7 \\ & \text { (ii) } n(A \cup B)=n(A-B)+n(B-A)+n \\ & (A \cap B) \\ & =14+x+3 x+x \\ & =14+5 x=14+5 \times 7=49 \end{aligned}$
4	$\begin{aligned} & \mathbf{C}-\mathbf{B}=\mathbf{A} \\ & =(\mathrm{A} \cup \mathrm{~B})-\mathrm{B} \\ & =(\mathbf{A} \cup \mathbf{B}) \cap{ }_{B^{\prime}} \\ & =B^{\prime} \cap(\mathbf{A} \cup \mathbf{B}) \\ & =\left(B^{\prime} \cap \mathbf{A}\right) \cup\left(B^{\prime} \cap \mathbf{B}\right) \\ & =\left(B^{\prime} \cap \mathbf{A}\right) \mathbf{U} \\ & =B^{\prime} \cap \mathbf{A} \\ & =\mathbf{A} \cap B^{\prime} \\ & =\mathbf{A}-\mathbf{B} \\ & =\mathbf{A} \text { (Proved }){ }^{[\because A \cap B=\varnothing]} \end{aligned}$

	Let $x \in A \cup B$ $\begin{aligned} & \Rightarrow x \in A \text { or } x \in B \\ & \Rightarrow x \in B \quad\{\because A \subset B\} \\ & \Rightarrow A \cup B \subset B \ldots(1) \end{aligned}$ We know that, $B \subset A \cup B$ \{this is always true\} ...(2) From (1) and (2) $A \cup B=B$ Now, suppose $y \in A$ $\begin{aligned} & \Rightarrow y \in A \cup B \\ & \Rightarrow y \in B\{\because A \cup B=B\} \\ & \Rightarrow A \subset B \end{aligned}$ Therefore, $A \subset B \Leftrightarrow A \cup B=B$ Hence Proved
5	For ${ }^{D f, f(x)}$ must be real number $\Rightarrow 3 x^{2}-5$ must be a real number Which is a real number for every $x \in R$ $\begin{equation*} \Rightarrow D f=R . \tag{i} \end{equation*}$ for $R f$, \|et $y=f(x)=3 x^{2}-5$ We know that for all $x \in R, x^{2} \geq 0 \Rightarrow 3 x^{2} \geq 0$ $\Rightarrow 3 x^{2}-5 \geq-5 \Rightarrow y \geq-5 \Rightarrow R f=[-5, \infty]$ Funthes, as $-3 \in D f, f(-3)$ exists is and $f(-3)$ $=3(-3)^{2}-5=22$ As $43 \in R f$ on putting $y=43$ is (i) weget $3 x^{2}-5=43 \Rightarrow 3 x^{2}=48 \Rightarrow \mathrm{x}^{2}=16 \Rightarrow x=-4,4$ There fore -4 and 4 are number (is $D f$) which are asSociated with the number 43 in $R f$
6	For ${ }^{D f_{i} f(x)}$ must be a real number $\Rightarrow \sqrt{x^{2}-4}$ Must be a real number $\begin{aligned} & \Rightarrow x^{2}-4 \geq 0 \Rightarrow(x+2)(x-2) \geq 0 \\ & \Rightarrow \text { either } x \leq-2 \text { or } x \geq 2 \\ & \Rightarrow D_{F}=(-\infty,-2] \cup[2, \infty) \end{aligned}$

	For R_{F} let As square root of a real number is always non-negative, $y \geq 0$ On squaring (i), we get $y^{2}=x^{2}-4$ $\Rightarrow x^{2}=y^{2}+4$ but $x^{2} \geq 0$ for all $x \in D_{F}$ $\Rightarrow y^{2}+4 \geq 0 \Rightarrow y^{2} \geq-4$, which is true for all $y \in R$. also $y \geq 0$ $\Rightarrow R_{F}=[0, \infty)$ OR For Df , ${ }^{f(x)}$ must be a real no. $\begin{aligned} & \Rightarrow\|x+2\| \neq 0 \Rightarrow x+2 \neq 0 \Rightarrow x \neq-2 \\ & \therefore \text { Domain of } f=\text { set of all real numbers } \\ & \text { except }-2 \text { i.e. } D f=R-\{-2\} \\ & \text { for } R f \\ & \text { caseI if } x+2>0 \text { then }\|x+2\|=x+2 \\ & \therefore f(x)=\frac{x+2}{\|x+2\|}=1 \\ & \text { caseII if } x+2<0,\|x+2\|=-(x+2) \\ & \therefore f(x)=\left(\frac{x+2}{-x+2}\right)=-1 \end{aligned}$ $\text { Range of } f=\{-1,1\}$
7	Let A and B be two sets having m and n elements respectively no of subsets of $A=2 \mathrm{~m}$ no of subsets of $B=\mathbf{2 n}^{n}$ According to question $\begin{aligned} & 2^{m}=56+2^{n} \\ & 2^{m}-2^{n}=56 \end{aligned}$

$$
\begin{aligned}
& 2^{n}\left(2^{m-n}-1\right)=56 \\
& 2^{n}\left(2^{m \cdot n}-1\right)=2^{3}\left(2^{3}-1\right) \\
& 2^{n}=2^{3} \\
& n=3 \\
& m-n=3 \\
& m-3=3 \\
& m=6
\end{aligned}
$$

