	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT CLASS XIISC	
1	Which of the following is the principal value branch of $\cos ^{-1} x$? A) $[0, \pi]$ B) $(0, \pi)$ C) $\{0, \pi\}$ D) $(0, \pi]$	1
2	Find the value of $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)$ A) $\frac{29}{26}$ B) $\frac{31}{26}$ $\begin{array}{ll}\text { C) } \frac{37}{29} & \text { D) } \frac{37}{26}\end{array}$	1
3	Find the principal value of $\boldsymbol{t a n}^{-1} \sqrt{3}-\mathbf{s e c}^{-1}(-2)$ We have, $\tan ^{-1}(\sqrt{ } 3)-\cot ^{-1}(-\sqrt{ } 3)$ $\begin{aligned} & =\tan ^{-1}(\sqrt{ } 3)-\left\{\pi-\cot ^{-1}(\sqrt{ } 3)\right\}\left[\because \cot ^{-1}(-x)=\pi-\cot ^{-1} x ; x \in R\right] \\ & =\tan ^{-1} \sqrt{ } 3-\pi+\cot ^{-1} \sqrt{ } 3 \\ & =\left(\tan ^{-1} \sqrt{ } 3+\cot ^{-1} \sqrt{ } 3\right)-\pi \\ & =\frac{\pi}{2}-\pi=-\frac{\pi}{2}\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} ; x \in R\right] \end{aligned}$ Which is the required principal value.	2
4	$\begin{aligned} & \text { Write the value of } \tan ^{-1}\left[2 \sin \left(2 \cos ^{-1}(\sqrt{3 / 2})\right)\right] \\ & \text { We have, } \tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{2}\right)\right] \\ & =\tan ^{-1}\left[2 \sin \left\{2 \cos ^{-1}\left(\cos \frac{\pi}{6}\right)\right\}\right]\left[\because \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\right] \\ & =\tan ^{-1}\left[2 \sin \left\{2 \times \frac{\pi}{6}\right\}\right] \\ & =\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]\right] \\ & =\tan ^{-1}\left(2 \sin \frac{\pi}{3}\right)=\tan ^{-1}\left(2 \cdot \frac{\sqrt{3}}{2}\right)\left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right] \\ & =\tan ^{-1}(\sqrt{3})=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)=\frac{\pi}{3} \\ & {\left[\because \tan \frac{\pi}{3}=\sqrt{3} \text { and } \tan ^{-1}(\tan \theta)=\theta, \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right]} \end{aligned}$	2
5	Find the value of $\sin \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)$	2

Let $\cos ^{-1} \frac{4}{5}=x$, then
$\Rightarrow \quad \cos x=\frac{4}{5}$
$\Rightarrow \quad \sin x=\sqrt{1-\cos ^{2} x}=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$\Rightarrow \quad \sin x=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$
$\Rightarrow \quad \tan x=\frac{3}{4}$
$\Rightarrow \quad x=\tan ^{-1}\left(\frac{3}{4}\right)=\cos ^{-1}\left(\frac{4}{5}\right)$
Now,
$\sin \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=\sin \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
$=\sin \left(\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}\right)\right)$
$\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1\right]$
$=\sin \left(\tan ^{-1}\left(\frac{\frac{9+8}{12}}{\frac{12-6}{12}}\right)\right)=\sin \left(\tan ^{-1}\left(\frac{17}{6}\right)\right)$
Now, let $\tan ^{-1}\left(\frac{17}{6}\right)=y$
$\Rightarrow \quad \tan y=\frac{17}{6}$
$\Rightarrow \quad \sin y=\frac{17}{\sqrt{325}}=\frac{17}{5 \sqrt{13}}$

$$
\begin{aligned}
\Rightarrow \quad y & =\sin ^{-1}\left(\frac{17}{5 \sqrt{13}}\right) \\
& =\tan ^{-1}\left(\frac{17}{6}\right)
\end{aligned}
$$

Hence,
$\sin \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=\sin \left(\sin ^{-1} \frac{17}{5 \sqrt{13}}\right)=\frac{17}{5 \sqrt{13}}$

6	Prove that $\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}=\frac{2 b}{a}$ To Prove $\begin{aligned} & \tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a} \\ & \text { LHS }=\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right) \end{aligned}$ Put $\cos ^{-1} \frac{a}{b}=\theta \Rightarrow \cos \theta=\frac{a}{b}$ $\text { LHS }=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)$ $=\frac{\tan \frac{\pi}{4}+\tan \frac{\theta}{2}}{1-\tan \frac{\pi}{4} \tan \frac{\theta}{2}}+\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}$ $=\frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}+\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}$ $=\frac{\left(1+\tan \frac{\theta}{2}\right)^{2}+\left(1-\tan \frac{\theta}{2}\right)^{2}}{\left(1-\tan \frac{\theta}{2}\right)\left(1+\tan \frac{\theta}{2}\right)}$ $=2\left(\frac{1+\tan ^{2} \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}\right)=\frac{2}{\cos \theta}=\frac{2}{a / b}=\frac{2 b}{a}$ $\left[\because \cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right]$ Hence proved.	3
7	Solve the following equation for $\mathrm{x} . \cos \left(\tan ^{-1} \mathrm{x}\right)=\sin \left(\cot ^{-1} 3 / 4\right)$	4

We have, $\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1} \frac{3}{4}\right) \ldots \ldots \ldots$ (i)
Let $\tan ^{-1} \mathrm{x}=\theta$ and $\cot ^{-1} \frac{3}{4}=\Phi \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
and $\Phi \in(0, \pi)$
$\Rightarrow \tan \theta=x$ and $\cot \Phi=\frac{3}{4}$
$\Rightarrow \sec \theta=\sqrt{1+\tan ^{2} \theta}$ and $\operatorname{cosec} \Phi=\sqrt{1+\cot ^{2} \phi}$
[taking positive square root as $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\Phi \in(\theta, \pi)$]
$\Rightarrow \sec \theta=\sqrt{1+x^{2}}$
and $\operatorname{cosec} \phi=\sqrt{1+\left(\frac{3}{4}\right)^{2}}=\sqrt{\frac{16+9}{16}}=\sqrt{\frac{25}{16}}=\frac{5}{4}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{\cos \theta}=\sqrt{1+x^{2}} \text { and } \frac{1}{\sin \phi}=\frac{5}{4} \\
& \Rightarrow \quad \cos \theta=\frac{1}{\sqrt{1+x^{2}}} \text { and } \sin \phi=\frac{4}{5} \\
& \Rightarrow \quad \theta
\end{aligned} \quad \begin{gathered}
\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}} \text { and } \phi=\sin ^{-1} \frac{4}{5} \\
\Rightarrow \quad \tan ^{-1} x=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}} \text { and } \cot ^{-1} \frac{3}{4}=\sin ^{-1} \frac{4}{5}
\end{gathered}
$$

On substituting these values in Eq. (i), we get

$$
\begin{aligned}
& \cos \left(\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right)=\sin \left(\sin ^{-1} \frac{4}{5}\right) \\
& \Rightarrow \frac{1}{\sqrt{1+x^{2}}}=\frac{4}{5} \quad\left[\because \cos \left(\cos ^{-1} x\right)=x ; \forall x \in[-1,1]\right. \\
&\text { and } \left.\sin \left(\sin ^{-1} x\right)=x ; \forall x \in[-1,1]\right]
\end{aligned}
$$

On squaring both sides, we get

$$
16\left(x^{2}+1\right)=25 \Rightarrow 16 x^{2}=9 \Rightarrow x^{2}=\frac{9}{16}
$$

$\Rightarrow x= \pm \frac{3}{4}$ [taking square root both sides]
3ut $x=\frac{-3}{4}$ does not satisfy the given equation. Hence, the required solution is $x=\frac{3}{4}$.

Show that $\boldsymbol{\operatorname { t a n }}\left(\frac{1}{2} \boldsymbol{\operatorname { s i n }}^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$

Answer:
To prove, $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$

$$
\begin{equation*}
\mathrm{LHS}=\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right) \tag{i}
\end{equation*}
$$

Let $\quad \frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)=\theta$
Then, $\quad \sin ^{-1}\left(\frac{3}{4}\right)=2 \theta \Rightarrow \sin 2 \theta=\frac{3}{4}$
Also, $2 \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Now, $\sin 2 \theta=\frac{3}{4}$
$\Rightarrow \quad \frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{3}{4} \quad\left[\because \sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]$
$\Rightarrow \quad 8 \tan \theta=3+3 \tan ^{2} \theta$
$\Rightarrow 3 \tan ^{2} \theta-8 \tan \theta+3=0$
Now, by quadratic formula

$$
\tan \theta=\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 3 \times 3}}{2 \times 3}
$$

$\Rightarrow \tan \theta=\frac{8 \pm \sqrt{64-36}}{6}=\frac{8 \pm \sqrt{28}}{6}$
$\Rightarrow \tan \theta=\frac{8 \pm 2 \sqrt{7}}{6}=\frac{4 \pm \sqrt{7}}{3}$
As, $-\frac{\pi}{2} \leq 2 \theta \leq \frac{\pi}{2} \Rightarrow-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
$\Rightarrow \quad-1 \leq \tan \theta \leq 1$
$\therefore \quad \tan \theta=\frac{4-\sqrt{7}}{3} \quad\left[\because \frac{4+\sqrt{7}}{3}>1\right]$

$$
\begin{array}{r}
\Rightarrow \quad \theta=\tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right) \\
\Rightarrow \quad \frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)=\tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right) \\
\\
{[\text { [from Eq. (ii)] }}
\end{array}
$$

On taking tan both sides, we get

$$
\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\tan \left\{\tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right)\right\}
$$

$\therefore \quad \tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}=$ RHS

