	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT CLASS XIISC	
1	Which of the following is the principal value branch of cos ⁻¹ x?	1
	A)[0, π] B)(0, π) C){0, π } D)(0, π]	
2	Find the value of $\sin\left(2 an^{-1}rac{2}{3} ight)+\cos\left(an^{-1}\sqrt{3} ight)$	1
	A) $\frac{29}{26}$ B) $\frac{31}{26}$ C) $\frac{37}{29}$ D) $\frac{37}{26}$	
3	Find the principal value of tan -1 √3 − sec -1 (- 2)	2
	We have, $\tan^{-1}(\sqrt{3}) - \cot^{-1}(\sqrt{3})$	
	= tan ⁻¹ (√3) − {π − cot ⁻¹ (√3)} [∵ cot ⁻¹ (- x) = π − cot ⁻¹ x; x ∈ R]	
	$= \tan^{-1} \sqrt{3} - \pi + \cot^{-1} \sqrt{3}$	
	= (tan ⁻¹ √3 + cot ⁻¹ √3) − π	
	$=\frac{\pi}{2}-\pi=-\frac{\pi}{2}$ [: tan ⁻¹ x + cot ⁻¹ x = $\frac{\pi}{2}$; x \in R]	
	Which is the required principal value.	
4	Write the value of $\tan^{-1}[2\sin(2\cos^{-1}(\sqrt{3/2}))]$	2
	We have, $\tan^{-1}\left[2\sin\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right]$	
	$= \tan^{-1} \left[2\sin\left\{ 2\cos^{-1}\left(\cos\frac{\pi}{6}\right) \right\} \right] \left[\because \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} \right]$	
	$= \tan^{-1} \left[2 \sin \left\{ 2 \times \frac{\pi}{6} \right\} \right]$	
	$[\because \cos^{-1}(\cos\theta) = \theta; \forall \theta \in [0, \pi]]$	
	$= \tan^{-1}\left(2\sin\frac{\pi}{3}\right) = \tan^{-1}\left(2\cdot\frac{\sqrt{3}}{2}\right)\left[\because\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}\right]$	
	$= \tan^{-1} (\sqrt{3}) = \tan^{-1} \left(\tan \frac{\pi}{3} \right) = \frac{\pi}{3}$	
	$\left[\because \tan \frac{\pi}{3} = \sqrt{3} \text{ and } \tan^{-1} (\tan \theta) = \theta, \forall \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right]$	
5	Find the value of Sin (COS ⁻¹ $\frac{4}{5}$ + tan ⁻¹² $\frac{3}{3}$)	2

Let
$$\cos^{-1} \frac{4}{5} = x$$
, then
 $\Rightarrow \cos x = \frac{4}{5}$
 $\Rightarrow \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \left(\frac{4}{5}\right)^2}$
 $\Rightarrow \sin x = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$
 $\Rightarrow \tan x = \frac{3}{4}$
 $\Rightarrow x = \tan^{-1} \left(\frac{3}{4}\right) = \cos^{-1} \left(\frac{4}{5}\right)$
Now,
 $\sin\left(\cos^{-1} \frac{4}{5} + \tan^{-1} \frac{2}{3}\right) = \sin\left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3}\right)$
 $= \sin\left(\tan^{-1}\left(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}}\right)\right)$
 $\left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x + y}{1 - xy}\right), xy < 1\right]$
 $= \sin\left(\tan^{-1}\left(\frac{\frac{9 + 8}{12}}{12 - 6}\right)\right) = \sin\left(\tan^{-1}\left(\frac{17}{6}\right)\right)$
Now, let $\tan^{-1}\left(\frac{17}{6}\right) = y$
 $\Rightarrow \tan y = \frac{17}{\sqrt{325}} = \frac{17}{5\sqrt{13}}$
 $\Rightarrow y = \sin^{-1}\left(\frac{17}{5\sqrt{13}}\right)$
 $= \tan^{-1}\left(\frac{17}{6}\right)$
Hence,
 $\sin\left(\cos^{-1} \frac{4}{5} + \tan^{-1} \frac{2}{3}\right) = \sin\left(\sin^{-1} \frac{17}{5\sqrt{13}}\right) = \frac{17}{5\sqrt{13}}$

6	Prove that $\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right\} = \frac{2b}{a}$	3
	To Prove	
	$\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right) = \frac{2b}{a}$	
	LHS = $\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right)$	
	Put $\cos^{-1}\frac{a}{b} = \theta \implies \cos \theta = \frac{a}{b}$	
	LHS = $\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$	
	$= \frac{\tan\frac{\pi}{4} + \tan\frac{\theta}{2}}{1 - \tan\frac{\pi}{4}\tan\frac{\theta}{2}} + \frac{\tan\frac{\pi}{4} - \tan\frac{\theta}{2}}{1 + \tan\frac{\pi}{4}\tan\frac{\theta}{2}}$	
	$=\frac{1+\tan\frac{\theta}{2}}{1-\tan\frac{\theta}{2}}+\frac{1-\tan\frac{\theta}{2}}{1+\tan\frac{\theta}{2}}$	
	$=\frac{\left(1+\tan\frac{\theta}{2}\right)^2+\left(1-\tan\frac{\theta}{2}\right)^2}{\left(1-\tan\frac{\theta}{2}\right)\left(1+\tan\frac{\theta}{2}\right)}$	
	$= 2\left(\frac{1+\tan^2\frac{\theta}{2}}{1-\tan^2\frac{\theta}{2}}\right) = \frac{2}{\cos\theta} = \frac{2}{a/b} = \frac{2b}{a}$	
	$\begin{bmatrix} \because \cos\theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} \end{bmatrix}$	
	= RHS Hence proved.	
7	Solve the following equation for x. cos (tan-1 x) = sin(cot-13/4)	4

We have,
$$\cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4}) \dots (1)$$

Let $\tan^{-1} x = \theta$ and $\cot^{-1} \frac{3}{4} = \Phi \ \forall \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
and $\Phi \in (0, \pi)$
 $\Rightarrow \tan \theta = x$ and $\cot \Phi = \frac{3}{4}$
 $\Rightarrow \sec \theta = \sqrt{1 + \tan^2 \theta}$ and $\csc \Phi = \sqrt{1 + \cot^2 \phi}$
[taking positive square root as $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\Phi \in (\theta, \pi)$]
 $\Rightarrow \sec \theta = \sqrt{1 + x^2}$
and $\csc \phi = \sqrt{1 + (\frac{3}{4})^2} = \sqrt{\frac{16+9}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4}$
 $\Rightarrow \frac{1}{\cos \theta} = \sqrt{1 + x^2}$ and $\frac{1}{\sin \phi} = \frac{5}{4}$
 $\Rightarrow \frac{1}{\cos \theta} = \sqrt{1 + x^2}$ and $\sin \phi = \frac{4}{5}$
 $\Rightarrow \theta = \cos^{-1} \frac{1}{\sqrt{1 + x^2}}$ and $\phi = \sin^{-1} \frac{4}{5}$
 $\Rightarrow \tan^{-1} x = \cos^{-1} \frac{1}{\sqrt{1 + x^2}}$ and $\cot^{-1} \frac{3}{4} = \sin^{-1} \frac{4}{5}$
On substituting these values in Eq. (i), we get
 $\cos\left(\cos^{-1} \frac{1}{\sqrt{1 + x^2}}\right) = \sin\left(\sin^{-1} \frac{4}{5}\right)$
 $\Rightarrow \frac{1}{\sqrt{1 + x^2}} = \frac{4}{5}$ [: $\cos(\cos^{-1} x) = x; \forall x \in [-1, 1]$
and $\sin(\sin^{-1} x) = x; \forall x \in [-1, 1]$
 $16(x^2 + 1) = 25 \Rightarrow 16 x^2 = 9 \Rightarrow x^2 = \frac{9}{16}$
 $\Rightarrow x = \pm \frac{3}{4}$ [taking square root both sides]
But $x = -\frac{3}{4}$ does not satisfy the given equation. Hence, the required solution is $x = \frac{3}{4}$.

Answer: To prove, $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$ LHS = $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right)$...(i) Let $\frac{1}{2}\sin^{-1}\left(\frac{3}{4}\right) = \theta$...(ii) Then, $\sin^{-1}\left(\frac{3}{4}\right) = 2\theta \implies \sin 2\theta = \frac{3}{4}$ Also, $2\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Now, $\sin 2\theta = \frac{3}{4}$ $\Rightarrow \qquad \frac{2\tan\theta}{1+\tan^2\theta} = \frac{3}{4} \qquad \left[\because \sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta} \right]$ $8 \tan \theta = 3 + 3 \tan^2 \theta$ ⇒ \Rightarrow 3 tan² θ - 8 tan θ + 3 = 0 Now, by quadratic formula $\tan\theta = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 3 \times 3}}{2 \times 2}$ $\Rightarrow \tan \theta = \frac{8 \pm \sqrt{64 - 36}}{6} = \frac{8 \pm \sqrt{28}}{6}$ $\Rightarrow \tan\theta = \frac{8 \pm 2\sqrt{7}}{6} = \frac{4 \pm \sqrt{7}}{3}$ As, $-\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2} \implies -\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ $\Rightarrow -1 \leq \tan \theta \leq 1$ $\tan \theta = \frac{4 - \sqrt{7}}{3} \qquad \left[\because \frac{4 + \sqrt{7}}{3} > 1 \right]$ *:*..

$$\Rightarrow \quad \theta = \tan^{-1} \left(\frac{4 - \sqrt{7}}{3} \right)$$

[:: $\tan \theta = x \Rightarrow \theta = \tan^{-1} x$]

$$\Rightarrow \quad \frac{1}{2} \sin^{-1} \left(\frac{3}{4} \right) = \tan^{-1} \left(\frac{4 - \sqrt{7}}{3} \right)$$

[from Eq. (ii)]
On taking tan both sides, we get

$$\tan \left(\frac{1}{2} \sin^{-1} \frac{3}{4} \right) = \tan \left\{ \tan^{-1} \left(\frac{4 - \sqrt{7}}{3} \right) \right\}$$

$$\therefore \quad \tan \left(\frac{1}{2} \sin^{-1} \frac{3}{4} \right) = \frac{4 - \sqrt{7}}{3} = RHS$$