	BCM SCHOOL BASANT AVENUE DUGRI LUDHIANA
	CLASS XI SC SEQUENCES AND SERIES
1	Find the sum of the series $(3^3 - 2^3) + (5^3 - 4^3) + (7^3 - 6^3) +$ to
	(i) n terms (ii) 10 terms
2	If x, 2y and 3z are in A.P. where the distinct numbers x, y and z are in
	G.P., then the common ratio of the G.P.
3	If t_n denotes the nth term of the series 2 + 3+ 6+11 + 18+, then t_{50}
4	The lengths of three unequal edges of a rectangular solid block are in
	G.P. If the volume of the block is 216 cm ³ and the total surface area is
	252 cm ² , then the length of the longest edge.
5	Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
6	Prove that $1^2+2^2+3^2+\ldots + n^2=\frac{n(n+1)(2n+1)}{6}$ Prove that $1^3+2^3+3^3+\ldots + n^3=\left(\frac{n(n+1)}{2}\right)^2$
7	Find the sum to n terms of the series 1 ² + (1 ² + (1 ² + 2 ²) + (1 ² + 2 ² + 3 ²) +
8	The ratio of A M and G. M of two_positive numbers. a and b are m: n
	show that a: b = $(m + \sqrt{m^2-n^2})$: $(m - \sqrt{m^2-n^2})$
9	If the p th and q th terms of a G.P. are q and p respectively, then show that its
	$(p+q)$ th term is $\left(\frac{q^p}{p^q}\right)^{\frac{1}{p-q}}$.