	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA SUBJECTIVE ASSIGNMENT XISC (MATHS)	M.M:2 0
1	[Hint: Number of straight lines = ${}^{18}C_2 - {}^{5}C_2 + 1$.]	2
2	Show that for any sets A and B, A = $(A \cap B) \cup (A - B)$ and	2
	$A \cup (B - A) = (A \cup B)$	
3	PROVE IT WITH THE HELP OF DISTRIBUTIVE LAW	2
5	Let T be the set of students who like tea and C be the set of students who like coffee.	2
	Here n(T) = 150, m (C) = 225 and $n(C \cap T) = 100$	
	We know that $n(C \cup T) = n(C) + n(T) - n(C \cap T)$ = 150 + 225 - 100 = 275	
	Number of students taking either tea or coffee += 275	
	Number of students taking neither tea nor coffee = 600 - 275 = 325	
4	$\operatorname{Given} f(x) = 3x^2 - 5$	3
	For $Df, f(x)$ must be real number	
	$\Rightarrow 3x^2 - 5$ must be a real number	
	Which is a real number for every $x \in \mathbb{R}$	
	$\Rightarrow Df = R(i)$	
	for Rf, let $y = f(x) = 3x^2 - 5$	
	We know that for all $x \in \mathbb{R}, x^2 \ge 0 \Rightarrow 3x^2 \ge 0$	
	$\Rightarrow 3x^2 - 5 \ge -5 \Rightarrow y \ge -5 \Rightarrow Rf = [-5, \infty]$	
	Furthes, as $-3 \in Df$, $f(-3)$ exists is and $f(-3)$	
	$=3(-3)^2-5=22.$	
	As $43 \in Rf$ on putting $y = 43$ is (i) weget	
	$3x^2-5=43 \Rightarrow 3x^2=48 \Rightarrow x^2=16 \Rightarrow x=-4, 4.$	
	There fore -4 and 4 are number	
	(is Df) which are associated with the number 43 in Rf	
5	The alphabetical order of RACHIT is A, C, H, I, R and T	3
	Number of words beginning with A = 5!	
	Number of words beginning with C = 5! Number of words beginning with H = 5!	
	Number of words beginning with 1 = 5! and	
	Number of words beginning with R (i.e.) RACHIT = 1	
	∴ The rank of the word 'RACHIT' in the dictionary = 5! + 5! + 5! + 5! + 1 = 4 × 5! + 1 = 4 × 5 . 4 . 3 . 2 . 1 + 1 = 4 × 120 + 1 = 480 + 1 = 481	

7 LHS =
$$\cos \alpha + \cos \beta + \cos \gamma + \cos (\alpha + \beta + \gamma)$$

= $(\cos \alpha + \cos \beta) + [\cos \gamma + \cos (\alpha + \beta + \gamma)]$
= $2\cos(\frac{\alpha+\beta}{2}) \cdot \cos(\frac{\alpha-\beta}{2}) + 2\cos(\frac{\gamma+\alpha+\beta+\gamma}{2}) \cdot \cos(\frac{\gamma-\alpha-\beta-\gamma}{2})$
[$\because \cos x + \cos y = 2\cos(\frac{x+\gamma}{2})\cos(\frac{x-\gamma}{2})]$
= $2\cos(\frac{\alpha+\beta}{2}) \cdot \cos(\frac{\alpha-\beta}{2}) + 2\cos(\frac{\alpha+\beta+2\gamma}{2}) \cdot \cos(\frac{\alpha+\beta}{2})$
[$\because \cos(-x) = \cos x]$
= $2\cos(\frac{\alpha+\beta}{2}) [\cos(\frac{\alpha-\beta}{2}) + \cos(\frac{\alpha+\beta+2\gamma}{2})]$
= $2\cos(\frac{\alpha+\beta}{2}) [2\cos(\frac{\alpha-\beta}{2}) + \cos(\frac{\alpha+\beta+2\gamma}{2})]$
= $2\cos(\frac{\alpha+\beta}{2}) [2\cos(\frac{\alpha+\gamma}{2}) \cdot \cos(\frac{-\beta-\gamma}{2})]$
= $2\cos(\frac{\alpha+\beta}{2}) [2\cos(\frac{\alpha+\gamma}{2}) \cdot \cos(\frac{(-\beta+\gamma)}{2})]$
= $2\cos(\frac{\alpha+\beta}{2}) [2\cos(\frac{\alpha+\gamma}{2}) \cdot \cos(\frac{\beta+\gamma}{2})]$
[$\because \cos(-x) = \cos x]$
= $4\cos(\frac{\alpha+\beta}{2}) \cdot \cos(\frac{\beta+\gamma}{2}) \cdot \cos(\frac{\alpha+\gamma}{2})$