	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA	
	ASSIGNMENT (SETS, RELATION AND FUNCTION)	
	CLASS XISC	
1	The set (A \cap B')' \cup (B \cap C) is equal to	1
	$\mathbf{A)} \mathbf{A'} \cup \mathbf{B}$	
	$\mathbf{B}) \mathbf{A'} \cap \mathbf{B}$	
	C) $A' \cup C'$	
	$\mathbf{D}) \mathbf{A'} \cup \mathbf{B} \cup \mathbf{C}$	
2	Find domain of the function $f(x) = \frac{1}{\sqrt{x+[x]}}$	1
	A)(0, ∞) B)[0, ∞) C)(- ∞ , ∞) D)[1, ∞]	
3	A and B are two sets such that $n (A - B) = 14 + x$, $n (B - A)$	2
	= 3x and n (A \cap B) = x. If n (A) = n (B), Find (i) the value of	
	x (ii) n (A ∪ B)	
4	Prove that if A \cup B = C and A \cap B = ϕ then A = C – B	2
	OR	
	If A and B are subsets of the universal set U, then show	
	that $A \subset B \Leftrightarrow A \cup B = B$	
5	If $f(x) = \frac{x^2 - 3x + 1}{x - 1}$, find $f(-2) + f\left(\frac{1}{3}\right)$	2
	OR	
	Find the domain and the range of the function	
	$f(x) = 3x^2 - 5$ Also find f(-3) and the numbers which are	
	associated with the number 43 m its range.	
6	Find the domain and the range of the function $f(x) =$	3
	$\sqrt{x^2-4}$	
	OR	
	Find the domain and the range of the function f defied by	
	$f(x) = \frac{x+2}{ x+2 }$	
7	Two finite sets have m and n elements respectively. The	4
	total number of subsets of first set is 56 more than the	
	total number of subsets of the second set. find the values	
	of m and n.	