	BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT (SETS, RELATION AND FUNCTION) CLASS XISC	
1	The set $\left(A \cap B^{\prime}\right) ' \cup(B \cap C)$ is equal to A) $\mathbf{A}^{\prime} \cup \mathbf{B}$ B) $\mathbf{A}^{\prime} \cap \mathbf{B}$ C) $\mathbf{A}^{\prime} \cup \mathbf{C}^{\prime}$ D) $\mathbf{A}^{\prime} \cup \mathbf{B} \cup \mathbf{C}$	1
2	Find domain of the function $f(x)=\frac{1}{\sqrt{x+[x]}}$ A) $(0, \infty)$ B) $[0, \infty)$ C) $(-\infty, \infty)$ D) $[1, \infty]$	1
3	A and B are two sets such that $n(A-B)=14+x, n(B-A)$ $=3 x$ and $n(A \cap B)=x$. If $n(A)=n(B)$, Find (i) the value of x (ii) $n(A \cup B)$	2
4	Prove that if $\mathbf{A} \cup \mathbf{B}=\mathbf{C}$ and $\mathbf{A} \cap \mathbf{B}={ }^{\phi}$ then $\mathbf{A}=\mathbf{C}-\mathbf{B}$ OR If A and B are subsets of the universal set U, then show that $\mathbf{A \subset B} \Leftrightarrow \mathbf{A} \cup \mathbf{B}=\mathbf{B}$	2
5	$\text { If } f(x)=\frac{x^{2}-3 x+1}{x-1} \text {, find } f(-2)+f\left(\frac{1}{3}\right)$ OR Find the domain and the range of the function $f(x)=3 x^{2}-5$ Also find $f(-3)$ and the numbers which are associated with the number 43 m its range.	2
6	Find the domain and the range of the function $f(x)=$ $\sqrt{x^{2}-4}$ OR Find the domain and the range of the function ${ }^{f}$ defied by $f(x)=\frac{x+2}{\|x+2\|}$	3
7	Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. find the values of m and n.	4

