

	$A=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{array}\right]$ find $A B$ and use this result in solving the following system of equation. $\begin{aligned} & x-y+z=4 \\ & x-2 y-2 z=9 \\ & 2 x+y+3 z=1 \end{aligned}$
10	If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
11	The sum of three no. is 6 . If we multiply third no. by 3 and add second no. to it, we get II. By adding first and third no. we get double of the second no. represent it algebraically and find the no. using matrix method.
12	Find the value of K so that function is continuous at the given $\text { value. } f(x)=\left\{\begin{array}{lll} \mathrm{Kx}+1 & \text { if } & \mathrm{x} \leq \pi \\ \cos \mathrm{x} & \text { if } & \mathrm{x}>\pi \end{array} \text { at } \mathrm{x}=\pi\right.$
13	Differentiate the following w.r.t. to x (ii) Differentiate w.r.t. $x: \sin ^{m} x \cdot \cos ^{n} x$
14	(i)If $x=a \sin p t, y=b \cos p t$, find the value of $\frac{d^{2} y}{d x^{2}}$ at $\mathbf{t}=\mathbf{0}$ (ii) Differentiate w.r.t. $\mathrm{x}: \cos ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)$; where $\frac{-\pi}{4}<x<\frac{\pi}{4}$
15	Let $f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{x^{2}}, \text { if } x<0 \\ =a, \text { if } x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, \text { if } x>0\end{array}\right.$. For what value of a, f is continuous at $\mathrm{x}=0$?

