BCM SCHOOL BASANT AVENUE DUGRI ROAD LUDHIANA ASSIGNMENT OF BINOMIAL THEOREM XI SC ANSWER KEY (MATHS)

	ANSWER KEY CLASS XI SC
1	C
2	b
3	C
4	Given that, a_1, a_2, \dots, a_n are in A.P., $\forall a_i > 0$
	: $a_1 - a_2 = a_2 - a_3 = \dots = a_{n-1} - a_n = -d$ (constant) (1)
	Now, 1 1 1
	$\sqrt{a_1} + \sqrt{a_2} + \sqrt{a_2} + \sqrt{a_3} + \dots + \sqrt{a_{n-1}} + \sqrt{a_n}$
	$=\frac{\sqrt{a_1}-\sqrt{a_2}}{a_1-a_2}+\frac{\sqrt{a_2}-\sqrt{a_3}}{a_1-a_2}+\dots+\frac{\sqrt{a_{n-1}}-\sqrt{a_n}}{a_n-a_n}$ (rationalizing)
	$= \frac{\sqrt{a_1 - a_2}}{\sqrt{a_1 - \sqrt{a_2}}} + \frac{\sqrt{a_2 - a_3}}{\sqrt{a_3}} + \frac{\sqrt{a_{n-1} - a_n}}{\sqrt{a_{n-1} - \sqrt{a_n}}}$
	-d $-d$ $-d$ $-d$
	$=\frac{1}{-d}[\sqrt{a_1}-\sqrt{a_n}]$
	$=\frac{a_1 - a_n}{-d(\sqrt{a_1} + \sqrt{a_n})} $ (rationalizing)
	$=\frac{-(n-1)d}{-d(\sqrt{a_1}+\sqrt{a_n})}$ (as $a_n = a_1 + (n-1)d$)
	$=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$
5	It has to be proved that the sequence: aA, arAR, ar 2 AR 2 , ar $^{n-1}$ AR $^{n-1}$, forms a
	$\frac{\text{Second term}}{\text{First term}} = \frac{arAR}{aA} = rR$
	This term aA
	$\frac{1 \text{ mind term}}{r} = \frac{dr}{AR} = rR$
	Second term arAR
	Thus, the above sequence forms a G.P. and the common ratio is rR.
6	The coeff. Of the first three terms of $\left(x-\frac{3}{x^2}\right)^m$ are ${}^mC_0, (-3){}^mC_1$ and

	9 ${}^{m}C_{2}$.
	Therefore, by the given condition
	${}^{m}C_{0} - 3 {}^{m}C_{1} + 9 {}^{m}C_{2} = 559$
	$1 - 3m + \frac{9m(m-1)}{2} = 559$
	On solving we get $m = 12$
	$T_{r+1} = {}^{12} C_r \left(x \right)^{12-r} \left(\frac{-3}{x^2} \right)^r$
	$= {}^{12}C_r(x)^{12-r}.(-3)^r.(x)^{-2r}$
	$= {}^{12} C(x)^{12-3r} . (-3)^r$
	$12-3r=3 \implies r=3$, req. term is -5940 x^3
7	a = 3, b = 2, n=3
8	
9	(i)n (H ∪ S) = n (H) + n (S) − n (H ∩ S)
	= 30 + 25 - 16
	= 39
	(ii)n $(H' \cap S')$ = n (H \cup S)'
	= n(∪) - n (H ∪ S)
	= 50 - 39=11
	(iii) n (H ∪ S) = n (H) + n (S) −2 n (H ∩ S)
	= 30 + 25 - 2×16
	= 23
1	n(M)=a+b+d+e=15
	M p
	b c
	Б
	$\left(\frac{e}{f} \right)$
	u
	g
	C
	n(P) = b + c + e + f = 12
	n(C) = d + e + f + g = 11
	$n(M \cap P) = b + e = 9$
	$n (M \cap C) = d + e = 5$
	$n(P \cap C) = e + f = 4$
L	1

e = 3
so b = 6, d = 2, f = 1
a = 4, g = 5, c = 2
(i) g = 5,
(ii) a = 4,
(iii) c = 2
(iv) f = 1,
(v) b = 6,
(vi) g + a + c = 11
(vii) a + b + c + d + e + f + g + = 23
(viii) $25 - (a + b + c + d + e + f + g) = 25 - 23 = 2$

