

BCM SCHOOL, BASANT AVENUE, DUGRI, LUDHIANA.

DECEMBER ASSIGNEMENT ANSWER KEY / HINTS (2025-26)

CLASS- IX (MATHEMATICS)

TOPIC:CIRCLES

SECTION –A (MULTIPLE CHOICE QUESTIONS)

1.	(d) 150°
2.	(c) 45°
3.	(a)
5.	$\angle AOB = 80^\circ$, $\angle OAB = 50^\circ$
6.	<p>Let ABC be the triangle whose circumcenter is O. So, OB = OC $\angle OBC = \angle OCB = \theta$ (opposite angles of equal sides) In $\triangle BOC$, using the angle sum property of triangle, sum of all angles is 180°, we have: $\angle BOC + \angle OBC + \angle OCB = 180^\circ$ $\Rightarrow \angle BOC + \theta + \theta = 180^\circ$ $\Rightarrow \angle BOC = 180^\circ - 2\theta$ Also, in a circle, angle subtended by an arc at the center is twice the angle subtended by it at any other point in the remaining part of the circle. $\angle BOC = 2\angle BAC$ $\Rightarrow \angle BAC = \frac{1}{2}(\angle BOC)$ $\Rightarrow \angle BAC = \frac{1}{2}(180^\circ - 2\theta)$ $\Rightarrow \angle BAC = (90^\circ - \theta)$ $\Rightarrow \angle BAC + \theta = 90^\circ$ $\Rightarrow \angle BAC + \angle OBC = 90^\circ$ Hence proved.</p>
9.	<p>Given: $y = 32^\circ$ and $z = 40^\circ$ Proof: Let the line segments AD and CE cut each other at P. Since, $\angle APE = \angle CPD$ [Vertically opposite angles] Therefore, $\angle APE = x$ Now, $\angle BCP = \angle CDP + \angle CPD$ [Exterior angle] And $\angle PAB = \angle PEA + \angle APE$ [Exterior angle] $\angle BCP = x + y$... (i) and $\angle PAB = x + z$... (ii) Since ABCP is a cyclic quadrilateral, $\angle BCP + \angle PAB = 180^\circ$ $\Rightarrow x + y + x + z = 180^\circ$</p>

$$2x + (y + z) = 180^\circ \quad \dots \text{(iii)}$$

$$2x + (40^\circ + 32^\circ) = 180^\circ$$

$$2x = 180 - 72^\circ$$

$$\Rightarrow 2x = 108^\circ \Rightarrow x = 54^\circ$$

Since from (iii), we get

$$2x + (y + z) = 180^\circ$$

and

$$y + z = 90^\circ \quad [\text{Given}]$$

Therefore,

$$2x + 90^\circ = 180^\circ \Rightarrow 2x = 90^\circ$$

Therefore,

$$x = 45^\circ$$