	BCM SCHOOL, BASANT AVENUE, DUGRI, LUDHIANA.
	OCTOBER ASSIGNEMENT- ANSWER KEY
	CLASS- IX (MATHEMATICS)
	TOPICS: QUADRILATERALS & CIRCLES.
	SECTION –A (MULTIPLE CHOICE QUESTIONS)
1.	d)Opposite angles are bisected by the diagonals
2.	c) 50°
3.	d) 45°
	SECTION B(2 MARKS QUESTIONS)
4.	50°
5.	175°
	SECTION – C (3 MARKS QUESTIONS)
6.	$\angle DAB = 2x$
	$\angle DCB = 2y$
	We know that opposite angles of a parallelogram are equal.
	So, $\angle A = \angle C$ 2x = 2y
	ZX = Zy X = Y
	As DC AB, XC AY
	$\angle XCY = \angle CYB$ [Alternate angles]
	∠CYB = x
	$\angle XAY = x$
	As $\angle XAY$ and $\angle CYB$ are corresponding angles
	AX CY Therefore, AX is parallel to CY.
7.	$\therefore \angle BOC = \angle BCO$
	Angles opposite to equal sides of a triangle are equal
	$\Rightarrow \angle BOC = y \dots (1)$
	In ∆BOC,
	$\angle OBA = \angle BOC + \angle BCO$
	$ \cdot$ An exterior angle of a triangle is equal to the sum of its two interior opposite angles
	= y + y
	= 2y(2)
	In ∆OAB,
	·· OA = OB
	Radii of the same circle
	$\Rightarrow \angle OAB = \angle OBA$
	Angles opposite to equal sides of a triangle are equal
	$\Rightarrow \angle OAB = 2y \dots (3)$
	Now, ∵ DOC is a straight line
	$\therefore \angle AOD + \angle AOB + \angle BOC = 180^{\circ}$
	⇒ x + {180° - (∠OAB + ∠OBA)} + y = 180°
	Angle sum property of a triangle
	\Rightarrow x + 180° - (2y + 2y) + y = 180°
	\Rightarrow x = 3y

SECTION – D (5 MARKS QUESTIONS)		
8.	$\triangle AED \cong \triangle CEF$ by SAS criteria	
	$\angle 3 = \angle 4$ (c.p.c.t)	
	But these are alternate interior angles.	
	So, AB CF	
	AD = CF (c.p.c.t)	
	But AD = DB (D is the mid-point)	
	Therefore, BD = CF $B^{A^{\prime}}_{C}$	
	In BCFD (mid - point theorem)	
	BD CF (as AB CF) BD = CF	
	BCFD is a parallelogram as one pair of opposite sides is parallel and equal.	
	Therefore, DF BC (opposite sides of parallelogram)	
	DF = BC (opposite sides of parallelogram)	
	As DF BC, DE BC and DF = BC	
	But DE = EF	
	So, $DF = 2(DE)$	
	2(DE) = BC	
0	DE = 1/2(BC)	
9.	Proof: ∠XPY = 2∠XZY(1) The angle subtended by an arc of a circle at the centre is twice the angle subtended by it	
	at any point on the remaining part of the circle	
	\angle YPZ = 2 \angle YXZ(2)	
	The angle subtended by an arc of a circle at the centre is twice the angle subtended by it	
	at any point on the remaining part of the circle	
	Adding (1) and (2), we get,	
	$\angle XPY + \angle YPZ = 2 \angle XZY + 2 \angle YXZ$	
	$\Rightarrow \angle XPZ = 2 (\angle XZY + \angle YXZ)$	
	$\Rightarrow 2 (\angle XZY + \angle YXZ) = \angle XPZ.$	
10.	SECTION – E (CASE STUDY)	
10.		
	$\angle ABI = \angle CBI[BD \text{ is a bisector of angle } B]$	
	$\mathrm{BI} = \mathrm{BI}[\mathrm{COmmon}] \ \angle \mathrm{BIA} = \angle \mathrm{BIC}[ext{ Each 90}]$	
	$\therefore \triangle BIA \cong \triangle BIC[SAS congruence rule]$	
	$\therefore \mathrm{Al} = \mathrm{Cl}[\mathrm{CPCT}]$	
	It means I is the mid-point of AC . Hence proved	
	2. Here, $HG=rac{1}{2}AC$ [By mid-point theorem] and	
	$EF = \frac{1}{2} AC[$ By mid-point theorem]	
	$\mathbf{G}\mathbf{H}\ \mathbf{E}\mathbf{ar{F}}$ and $\mathbf{H}\mathbf{G}=\mathbf{E}\mathbf{F}$	
	If in a quadrilateral opposite side is parallel and equal then the quadrilateral is a	
	parallelogram. So, quadrilateral EFGH is a parallelogram.	
	3. It is false, because every parallelogram is not a rectangle.	