	ANSWER KEY XII(MATHS)	
1	B	
2	A	
3	We have Area BMNC $\int_{0}^{2 a} x d y=\int_{0}^{2 a} a^{1 / 3} y^{2 / 3} d y$ $\begin{aligned} & =\frac{3 a^{\frac{1}{3}}}{5}\left[y^{\frac{5}{3}}\right]_{a}^{0} a^{0 a} \\ & =\frac{3 a^{\frac{1}{3}}}{5}\left[(2 a)^{\frac{5}{3}}-a^{\frac{5}{3}}\right] \\ & =\frac{3}{5} a^{\frac{1}{3}} a^{\frac{5}{3}}\left[(2)^{\frac{5}{3}}-1\right] \\ & =\frac{3}{5} a^{2}\left[2.2^{\frac{2}{3}}-1\right] \text { sq units. } \end{aligned}$	
4	We have, $\mathrm{y}=\mathrm{x}^{3}$ and $\mathrm{y}=\mathrm{x}+6$ and $\mathrm{x}=0$ $\begin{aligned} & \therefore x^{3}=x+6 \\ & \Rightarrow x^{3}-x=6 \\ & \Rightarrow x^{3}-x-6=0 \\ & \Rightarrow x^{2}(x-2)+2 x(x-2)+3(x-2)=0 \\ & \Rightarrow(x-2)\left(x^{2}+2 x+3\right)=0 \end{aligned}$ $\Rightarrow x=2$ with two imaginary points \therefore Required area of shaded region $=\int_{0}^{2}\left(x+6-x^{3}\right) d x$ $\begin{aligned} & =\left[\frac{x^{2}}{2}+6 x-\frac{x^{4}}{4}\right]_{0}^{2} \\ & =\left[\frac{4}{2}+12-\frac{16}{4}-0\right] \\ & =[2+12-4]=10 \text { sq.units } \end{aligned}$	
5	Required Area $\begin{aligned} & =2\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{2}\right]_{\frac{a}{a}}^{a} \\ & =2\left[\frac{a^{2}}{2} \cdot \frac{\pi}{2}-\frac{a}{4} \cdot a \frac{\sqrt{3}}{2}-\frac{a^{2}}{2} \cdot \frac{\pi}{6}\right]^{2} \\ & =\frac{a^{2}}{12}(6 \pi-3 \sqrt{3}-2 \pi) \\ & =\frac{a^{2}}{12}(4 \pi-3 \sqrt{3}) \text { sq units } \end{aligned}$	

6	The equations of given curves are $\begin{equation*} y=\frac{3}{4} x^{2} . . \tag{1} \end{equation*}$ $\begin{equation*} \text { and } 3 x-2 y+12=0 . \tag{2} \end{equation*}$ From (2), $2 y=3 x+12$ $\therefore y=\frac{3 x+12}{2}$ putting this value of y in (1), we get $\begin{aligned} & \Rightarrow \frac{3 x+12}{2}=\frac{3}{4} x^{2} \\ & \Rightarrow 6 x+24=3 x^{2} \\ & \Rightarrow x^{2}-2 x-8=0 \\ & \Rightarrow(x+2)(x-4)=0 \\ & \Rightarrow x=-2,4 \\ & \therefore y=3,12 \end{aligned}$ Thus, curves (1) and (2) intersect in points $A(4,12)$ and $B(-2,3)$. Required area $=27$ sq.units.	
7	We have, $y=1+\|x+1\|, x=-3, x=3, y=0$ $\therefore y=\left\{\begin{array}{c} -x, \text { if } x<-1 \\ x+2, \text { if } x \geqslant-1 \end{array}\right.$ \therefore Area of shaded region, $A=\int_{-3}^{-1}-x d x+\int_{-1}^{3}(x+2) d x$ $\begin{aligned} & =-\left[\frac{x^{2}}{2}\right]_{-3}^{-1}+\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{3} \\ & =-\left[\frac{1}{2}-\frac{9}{2}\right]+\left[\frac{9}{2}+6-\frac{1}{2}+2\right] \\ & =-[-4]+[8+4] \\ & =12+4=16 \text { squnits } \end{aligned}$	

