<u>BCM SCHOOL, BASANT</u> <u>AVENUE, DUGRI</u>

<u>XI– PHYSICS</u>

ASSIGNMENT

<u>CHAPTER- UNITS &</u> <u>MEASUREMENTS</u>

MULTIPLE CHOICE QUESTIONS

Units and Dimensions

- Which of the following statements is correct about a scalar quantity:
 - (i) it remain conserved in a process
 - (ii) can never take negative sign
 - (iii) does not vary from one place to another in space
 - (iv) has same value for observers with different orientation of axis
 - (a) (i) (b) (ii)
 - (c) (iii) (d) (iv)
- 2. Which of the following is not the unit of time
 - (a) Micro second (b) Leap year
 - (c) Lunar month (d) Parallactic second
- 3. Temperature can be expressed as a derived quantity in terms of any of the following
 - (a) length and mass (b) mass and time
 - (c) length, mass and time (d) none of these
- 4. With the usual notations, the following equation

 $S_1 = u + \frac{1}{2}a(2t-1)$ is

- (a) only numerically correct
- (b) only dimensionally correct
- (c) both numerically and dimensionally correct
- (d) neither numerically nor dimensionally correct
- 5. Which of the following readings is the most accurate

(i)	4000 m	(ii)	$40 \times 10^2 \mathrm{m}$
(iii)	$4\times 10^3 \ m$	(iv)	$0.4\times 10^4 \text{ m}$
(a)	(i)	(b)	(ii)
(c)	(iii)	(d)	(iv)

- 6. If unit of length and force are increased 4 times. The unit of energy:
 - (a) is increased by 4 times
 - (b) is increased by 16 times
 - (c) is increased by 8 times
 - (d) remain unchanged
- Which one of the following is a set of dimensionless physical quantities :
 - (a) strain, specific gravity, angle
 - (b) strain, work, couple
 - (c) work, angle, specific gravity
 - (d) work, energy, frequency

- 8. Which one of the following does not have the same dimensions
 - (a) work and energy
 - (b) angle and strain
 - (c) relative density and refractive index
 - (d) plank constant and energy
- 9. The density of a material in CGS system is 8 g / cm³. In a system of a unit in which unit of length is 5 cm and unit of mass is 20 g. The density of material is :

(a)	8	(b)	20
2.2			~ ~

- (c) 50 (d) 80
- 10. In a new system the unit of mass is α kg, unit of length is β m and unit of time is γ s. The value of 1 J in this new system is [AMU B.Tech. 2012]
 (a) γ²/αβ²
 (b) γα/β²
 - (c) $\alpha\beta\gamma$ (d) $\alpha\gamma^2/\beta^2$
- 11. A boy recalls the relation almost correctly but forgets where to put the constant *c* (speed of light). He writes; $m = \frac{m_0}{\sqrt{1 - v^2}}$, where m and m_0 stand for masses and *v* for

speed. Right place of c is

(a)
$$m = \frac{cm_0}{\sqrt{1 - v^2}}$$
 (b) $m = \frac{m_0}{c\sqrt{1 - v^2}}$
(c) $m = \frac{m_0}{\sqrt{c^2 - v^2}}$ (d) $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

12. The equation of state of some gases can be expressed as $\left(P + \frac{a}{V^2}\right)(V - b) = RT$. Here *P* is the pressure, *V* is the

volume, T is the absolute temperature and a, b, R are constants. The dimensions of a are :

- (a) $ML^5 T^{-2}$ (b) $ML^{-1}T^2$
- (c) $M^0 L^3 T^0$ (d) $M^0 L^6 T^{-2}$